多元线性回归分析第15章.ppt_第1页
多元线性回归分析第15章.ppt_第2页
多元线性回归分析第15章.ppt_第3页
多元线性回归分析第15章.ppt_第4页
多元线性回归分析第15章.ppt_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1,Multiple Linear Regression Analysis,多元线性回归分析,第15章,第二军医大学卫生统计学教研室 张罗漫,2,讲课内容 第一节 多元线性回归(重点) 第二节 自变量选择方法(重点) 第三节 多元线性回归的应用及注 意事项,3,第一节 多元线性回归,一、多元线性回归模型,4,5,多元回归:多个Y,多个X 多重回归:一个Y,多个X,6,0 常数项 j 偏回归系数(partial regression coefficient): 在其它自变量保持不变时,Xj增加或减少 一个单位时Y的平均变化量。 e 去除m个自变量对Y影响后的随机误差。,7,多元线性回归模型应用条

2、件: 1.Y与X1,X2,Xm之间具有线性关系; 2.各个Yi间相互独立; 3.e服从均数为0、方差为2的正态分布。,8,多元线性回归分析步骤: 1.根据样本数据求得模型参数估计值: 2.对回归方程及各Xj作假设检验。,9,二、多元线性回归方程的建立,10,11,12,X1,X2,Y,13,用最小二乘法解正规方程组,使残差平方和Q最小。,14,15,用最小二乘法解正规方程组, 使残差平方和Q最小。,16,17,18,19,三、多元线性回归方程的 假设检验及评价,20,(一)回归方程的假设检验及评价,1.方差分析法,不全为0。,21,22,23,2.决定系数R2,血糖含量变异的60%可由总胆固醇

3、、甘油三酯、胰岛素和糖化血红蛋白的变异解释。,24,3.复相关系数R,Y与多个自变量间的线性相关程度; Y与估计值 间的Pearson相关系数r。,25,(二)各自变量的假设检验及评价,1.偏回归平方和,表示模型中含有其它m-1个自变量的条 件下该自变量对Y的回归贡献。其值愈 大说明相应的自变量愈重要。,26,27,0.6129+11.9627+20.0635+27.7939133.7107,28,胰岛素(X3)与糖化血红蛋白(X4)与血糖(Y)有线性回归关系。,29,2.t检验法,30,胰岛素(X3)与糖化血红蛋白(X4)与血糖(Y)有线性回归关系。,31,标准化回归系数bj 的绝对值用来比

4、较各个自变量Xj 对Y的影响程度大小;绝对值越大影响越大。标准化回归方程的截距为0。,3.标准化回归系数,标准化回归系数与一般回归方程的回归系 数的关系:,32,对血糖影响大小的顺序依次为糖化血红蛋白(X4)、胰岛素(X3)、甘油三酯(X2)与总胆固醇 (X1)。胰岛素为负向影响。,33,第二节 自变量选择方法,34,一、全局选择法 对自变量各种不同的组合所建立的回归方程进行比较,从全部组合中挑出一个“最优”的回归方程。,35,R2可用来评价回归方程优劣。 随着自变量增加,R2不断增大,对两个不 同个数自变量回归方程比较,须考虑方程 包含自变量个数影响,应对R2进行校正。 所谓“最优”回归方程

5、指 最大者。,1.校正决定系数 选择法,36,P为方程中自变量个数。 最优方程的Cp期望值是p+1。 应选择Cp最接近P+1的回归方程为最优。,2. 选择法,37,38,二、逐步选择法 全局选择计算量很大: 6个变量,计算26-1=63个方程; 10个变量,计算210-1=1023个方程。 按选入变量顺序不同分前进法、后退法 与逐步回归法,共同特点是每一步只引 入或剔除一个自变量Xj。,39,对Xj的取舍要进行F检验:,计算进行到第l步时: p :方程中自变量个数 SS回:Xj的偏回归平方和 SS残:残差平方和,40,1.前进法(只选不剔) 开始方程中无自变量,然后从方程外选取偏 回归平方和最

6、大的自变量作F检验以决定是否选入方程,直至无自变量可以引入方程为止。,缺点:后续变量的引入可能使先前引入的变 量变的不重要。,Xj入选,41,2.后退法(只剔不选) 开始方程中包含全部自变量,然后从方程中选取偏回归平方和最小的自变量作F检验以决定是否从方程中剔除,直至无自变量可以从方程中剔除为止。,缺点:当某些自变量高度相关时,可能得不 出正确结果。,Xj剔除,42,3.逐步回归法(先选后剔,双向筛选) 开始方程中无自变量,从方程外选取偏回归 平方和最大的自变量作F检验以决定是否选入 方程; 每引一个自变量进入方程后,从方程中选取 偏回归平方和最小的自变量作F检验以决定是 否从方程中剔除; 直

7、至方程外无自变量可引入,方程内无自变 量可剔除为止。,43,入值定的越小选取自变量标准越严,被选 入方程内自变量数越少。 入值越大则反之。,小样本:入=0.05,出=0.10。 大样本:入=0.10,出=0.15。 入出,以免Xj上一步剔除后下一步又被选入,44,选X4前先建立4个直线回归方程; 选X1前先建立1个含3个自变量、 3个含2个 自变量的多元线性回归方程。,45,46,47,48,49,50,第三节 多元线性回归的应用及注意事项,51,一、多元线性回归的应用 1.影响因素分析,年龄(X1) 饮食习惯(X2) 吸烟状况(X3) 工作紧张度(X4) 家族史(X5) ,高血压(Y),bj

8、的意义为在其它自变量保持不变时,Xj增加或减少一个单位时Y的平均变化量。故可排除混杂因素。,52,2.估计与预测 心脏表面积(Y)=b0+b1心脏横径(X1) + b2心脏纵径(X2)+ b3心脏宽径(X3) 新生儿体重(Y)=b0+b1胎儿孕龄(X1)+ b2 胎儿 头径(X2)+ b3胎儿胸径(X3)+ b4胎儿腹径(X4),53,3.统计控制 利用回归方程进行逆估计,确定Y后控制X 。 采用射频治疗仪治疗脑肿瘤: 脑皮质毁损半径(Y) =b0+b1射频温度(X1)+ b2照射时间(X2),54,二、多元线性回归应用的注意事项 1.指标的数量化 应变量Y为连续变量 自变量X可为连续、有序分类或无序分类变量 (1)连续变量:X (2)有序分类变量: 1 轻 X= 2 中 3 重,55,(3)无序分类变量,哑变量(dummy variables),56,2.样本含量 n至少是X个数m的510倍 3.多重共线性 实际应用中非常普遍,可使最小二乘法建 立的回归方程失效; 消除方法:主成分回归;剔除某个造成共 线性的自变量。,57,4.变量间的交互作用 某一自变量对Y的作用大小与另一自变量的取值有关。,血糖(Y)与总胆固醇 (X1)、甘油三酯(X2)、胰岛素(X3)、糖化血红蛋白(X

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论