高考数学一轮复习 第二章 函数概念与基本初等函数I 第1讲 函数及其表示课件_第1页
高考数学一轮复习 第二章 函数概念与基本初等函数I 第1讲 函数及其表示课件_第2页
高考数学一轮复习 第二章 函数概念与基本初等函数I 第1讲 函数及其表示课件_第3页
高考数学一轮复习 第二章 函数概念与基本初等函数I 第1讲 函数及其表示课件_第4页
高考数学一轮复习 第二章 函数概念与基本初等函数I 第1讲 函数及其表示课件_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第1讲函数及其表示,最新考纲1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).,知 识 梳 理,1.函数与映射的概念,非空数集,非空集合,任意,唯一确定,任意,唯一确定,f:ab,f:ab,2.函数的定义域、值域 (1)在函数yf(x),xa中,x叫做自变量,x的取值范围a叫做函数的_;与x的值相对应的y值叫做函数值,函数值的_叫做函数的_. (2)如果两个函数的_相同,并且_完全一致,则这两个函数为相等函数.,定义域,集合f

2、(x)|xa,值域,定义域,对应关系,3.函数的表示法 表示函数的常用方法有_、图象法和_. 4.分段函数 (1)若函数在其定义域的不同子集上,因_不同而分别用几个不同的式子来表示,这种函数称为分段函数. (2)分段函数的定义域等于各段函数的定义域的_,其值域等于各段函数的值域的_,分段函数虽由几个部分组成,但它表示的是一个函数.,解析法,列表法,对应关系,并集,并集,诊 断 自 测,1.判断正误(在括号内打“”或“”),答案(1)(2)(3)(4),2.(必修1p25b2改编)若函数yf(x)的定义域为mx|2x2,值域为ny|0y2,则函数yf(x)的图象可能是(),解析a中函数定义域不是

3、2,2,c中图象不表示函数,d中函数值域不是0,2. 答案b,答案d,答案c,5.(2015全国卷)已知函数f(x)ax32x的图象过点(1,4),则a_.,解析由题意知点(1,4)在函数f(x)ax32x的图象上,所以4a2,则a2.,答案2,考点一求函数的定义域,规律方法求函数定义域的类型及求法 (1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)若已知f(x)的定义域为a,b,则f(g(x)的定义域可由ag(x)b求出;若已知f(g(x)的定义域为a,b,则f(x)的定义域为g(x)在xa,b时的值

4、域.,答案(1)c(2)1,0,规律方法求函数解析式的常用方法 (1)待定系数法:若已知函数的类型,可用待定系数法. (2)换元法:已知复合函数f(g(x)的解析式,可用换元法,此时要注意新元的取值范围.,考点三分段函数(多维探究) 命题角度一求分段函数的函数值,解析根据分段函数的意义,f(2)1log2(22)123.又log2121,f(log212)2(log2121)2log266, 因此f(2)f(log212)369. 答案c,答案(1)d(2)(,8,规律方法(1)根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数的

5、取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 提醒当分段函数的自变量范围不确定时,应分类讨论.,答案(1)a(2)x|4x2,思想方法 1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同. 2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识. 3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法. 4.分段函数问题要用分类讨论思想分段求解.,易错防范 1.复合函数fg(x)的定义域也是解析式中x的范围,不要和f(x)的定义域相混. 2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论