版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 第二章 平面向量 章末小结【本章知识体系】【题型归纳】专题一、平面向量的概念及运算包含向量的有关概念、加法、减法、数乘。向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线1、1.化简后等于()A3 B. C. D.2、在平行四边形ABCD中,a,b,c,d,则下列运算正确的是()Aabcd0 Babcd0Cabcd0 Dabcd03、已知圆O的半径为3,直径AB上一点D使3,E、F为另一直径的两个端点,则()A3 B4 C8 D64、如图,在正方形ABCD中,设a,b,
2、c,则在以a,b为基底时,可表示为_,在以a,c为基底时,可表示为_5、下列说法正确的是()A两个单位向量的数量积为1B若abac,且a0,则bcC D若bc,则(ac)bab专题二、平面向量的坐标表示及坐标运算向量的坐标表示及运算强化了向量的代数意义。若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。6、已知向量a(1,n),b(1,n),若2ab与b垂直,则|a|等于()A1 B. C2 D47、设向量a(1,3),b(2,4),c(1,2),若表示向量4a,4b2c,2(ac),d的有向线段首尾相接能构成四边形,则d()A(2,6) B(2
3、,6) C(2,6) D(2,6)8、已知a(1,1),b(1,0),c满足ac0,且|a|c|,bc0,则c_.专题三、平面向量的基本定理平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。9、已知AD、BE分别为ABC的边BC、AC上的中线,设a,b,则等于()A.ab B.abC.ab Dab10、在平面直角坐标系中,若O为坐标原点,则A,B,C三点在同一直线上的等价条件为存在唯一的实数,使得(1)成立,此时称实数为“向量关于和的终点共线分解系数”若已知P1(3, 1),P2(1,3),且向量与向量a(1,1)垂直,则“向量关于和的终点共线分解系数”为()A3 B3
4、 C1 D111、已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足20,(1)用,表示;(2)若点D是OB的中点,证明四边形OCAD是梯形解:12、如图,平行四边形ABCD中,a,b,H、M是AD、DC的中点,BC上点F使BFBC.(1)以a、b为基底表示向量与;(2)若|a|3,|b|4,a与b的夹角为120,求.专题四、平面向量的数量积求平面向量的数量积的方法有两个:一个是根据数量积的定义ab|a|b|cos,其中为向量a,b的夹角;另一个是根据坐标法,坐标法是a(,),b(,)时,ab。利用数量积可以求长度,也可判断直线与直线的关系(相交的夹角以及垂直),还可以通过向量的坐标
5、运算转为代数问题解决13、在直角坐标系xOy中,(2,1),(3,k),若三角形ABC是直角三角形,则k的可能值个数是()A1 B2 C3 D414、A,B,C,D为平面上四个互异点,且满足(2)()0,则ABC的形状是()A直角三角形 B等腰三角形 C等腰直角三角形 D等边三角形15、已知|a|,|b|4,|c|2,且abc0,则abbcca_.16已知|a|1,|b|1,a与b的夹角为120,则向量2ab在向量ab方向上的投影为_17如图所示,在正方形ABCD中,已知|2,若N为正方形内(含边界)任意一点,则的最大值是_18、设平面上向量a(cos ,sin )(02),b(,),a与b不共线(1)证明向量ab与ab垂直;(2)当两个向量ab与ab的模相等时,求角.19、已知a(1,2),b(1,),分别确定实数的取值范围,使得:(1)a与b的夹角为直角;(2) a与b的夹角为钝角专题五、平面向量的应用用向量的方法研究代数问题与一些几何问题,往往能有一种简易的奇妙效果,关键是建立几何与向量问题的联系,利用向量的运算。FEDCBA20、如图,在平行四边形ABCD中,E为对角线BD上的一点,且BE:ED=2:3,连接CE并延长交AB与F,求AF:FB的值。21、在平面直角坐标系中,A(1,1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论