版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、广东省茂名市实验中学2013届高三数学文周测2一、选择题:本大题共10个小题,每小题5分,满分50分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合,则集合 A B C D2. 为虚数单位,则复数的虚部为A B C D第3题图3. 为了了解某学校2000名高中男生的身体发育情况,抽查了该校100名高中男生的体重情况.根据所得数据画出样本的频率分布直方图,据此估计该校高中男生体重在7078kg的人数为A240 B160 C80 D604. 在平面直角坐标系中, 落在一个圆内的曲线可以是 A B C D 5. A. B. C. D. 6 若对任意正数,均有,则实数的取值范围是A. B.
2、 C. D. 7曲线在点处的切线方程是 A. B. C. D. 8已知命题:“对任意, 都有”;命题:“空间两条直线为异面直线的充要条件是它们不同在任何一个平面内”则A. 命题“”为真命题 B. 命题“”为假命题 C. 命题“”为真命题 D. 命题“”为真命题第9题图9. 某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为的圆(包括圆心),则该零件的体积是A B C D 10. 线段是圆的一条直径,离心率为的双曲线以 为焦点若是圆与双曲线的一个公共点,则A. B. C. D. 二、填空题:本大题共5小题,考生作答4小题,每小
3、题5分,满分20分第11题图(一)必做题:第11、12、13题为必做题11. 按照右图的工序流程,从零件到成品最少要经过_道加工和检验程序,导致废品的产生有_种不同的情形12. 已知递增的等比数列中,则 . 13. 无限循环小数可以化为有理数,如,请你归纳出 (表示成最简分数(二)选做题:第14、15题为选做题,考生只能从中选做一题第15题图14. (坐标系与参数方程选做题)在极坐标系中,直线(常数)与曲线相切,则 15(几何证明选讲选做题)如图,是半圆的直径,弦和弦相交于点,且,则 三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤16(本小题满分12分)在中,角为
4、锐角,记角所对的边分别为设向量且与的夹角为(1)求的值及角的大小;(2)若,求的面积17(本小题满分12分)设函数,其中是某范围内的随机数,分别在下列条件下,求事件A “且”发生的概率. (1) 若随机数; (2) 已知随机函数产生的随机数的范围为, 是算法语句和的执行结果(注: 符号“”表示“乘号”)18(本小题满分14分)如图,四棱柱的底面是平行四边形,分别在棱上,且(1)求证:;(2)若平面,四边形是边长为的正方形,且,求线段的长, 并证明:第18题图19(本小题满分14分)已知二次函数的最小值为且关于的不等式的解集为,(1)求函数的解析式;(2)求函数的零点个数.20(本小题满分14分
5、)如图,是抛物线上的两动点(异于原点),且的角平分线垂直于轴,直线与轴,轴分别相交于.(1) 求实数的值,使得; 第20题图(2)若中心在原点,焦点在轴上的椭圆经过. 求椭圆焦距的最大值及此时的方程.21(本小题满分14分)定义数列: ,且对任意正整数,有.(1)求数列的通项公式与前项和; (2)问是否存在正整数,使得?若存在,则求出所有的正整数对;若不存在,则加以证明.数学(文科)参考答案及评分标准说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则2. 对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改
6、变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数4. 只给整数分数,选择题和填空题不给中间分数一、选择题:本大题考查基本知识和基本运算。共10小题,每小题5分,满分50分题号12345678910答案CC AD B A BC CD二、填空题:本大题考查基本知识和基本运算,体现选择性共5小题,每小题5分,满分20分其中第14、15两小题是选作题,考生只能选做一题,如果两题都做,以第14题的得分为最后得分11 (第一空3分,第二空2分) 12 13. 14 1
7、5 三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤16(本小题满分12分)在中,角为锐角,记角所对的边分别为设向量且与的夹角为(1)求的值及角的大小;(2)若,求的面积【说明】 本小题主要考查向量的数量积和夹角的概念,以及用正弦或余弦定理解三角形,三角形的面积公式,考查了简单的数学运算能力解:(1) 3分,5分 7分(2)(法一) ,及, 即(舍去)或 10分故12分(法二) ,及,.7分, ,.10分 故12分17(本小题满分12分)设函数,其中是某范围内的随机数,分别在下列条件下,求事件A “且”发生的概率. (1) 若随机数; (2) 已知随机函数产生的随机
8、数的范围为, 是算法语句和的执行结果(注: 符号“”表示“乘号”)【说明】本题主要考查随机数、随机函数的定义,古典概型,几何概型,线性规划等基础知识,考查学生转换问题的能力,数据处理能力解:由知,事件A “且”,即1分 (1) 因为随机数,所以共等可能地产生个数对,列举如下:, 4分事件A :包含了其中个数对,即: 6分所以,即事件A发生的概率为 7分(2) 由题意,均是区间中的随机数,产生的点均匀地分布在边长为4的正方形区域中(如图),其面积. 8分事件A :所对应的区域为如图所示的梯形(阴影部分),其面积为:.10分所以,即事件的发生概率为 12分18(本小题满分14分)如图,四棱柱的底面
9、是平行四边形,分别在棱上,且(1)求证:;(2)若平面,四边形是边长为的正方形,且,求线段的长, 并证明:第18题图【说明】本题主要考察空间点、线、面位置关系,考查线线、线面平行的性质和判定,线线垂直的性质和判定,考查空间想象能力、运算能力、把空间问题转化为平面问题的意识以及推理论证能力证明:(1)四棱柱的底面是平行四边形,1分平面平面平面 平面3分平面,平面平面4分,四点共面. 5分平面平面,平面平面,7分(2) 设 四边形,四边形都是平行四边形,为,的中点,为,的中点. 8分连结由(1)知,从而., 10分平面,四边形是正方形,,均为直角三角形,得, ,即. 12分平面平面. 平面平面 1
10、3分平面 14分19(本小题满分14分)已知二次函数的最小值为且关于的不等式的解集为,(1)求函数的解析式;(2)求函数的零点个数.【说明】本题主要考查二次函数与一元二次不等式的关系,函数零点的概念,导数运算法则、用导数研究函数图像的意识、考查数形结合思想,考查考生的计算推理能力及分析问题、解决问题的能力解:(1)是二次函数, 且关于的不等式的解集为, 且. 4分,且, 6分故函数的解析式为(2) ,. 8分 的取值变化情况如下:单调增加极大值单调减少极小值单调增加 11分当时, ;12分又.13分故函数只有1个零点,且零点14分20(本小题满分14分)如图,是抛物线上的两动点(异于原点),且
11、的角平分线垂直于轴,直线与轴,轴分别相交于.第20题图(1) 求实数的值,使得; (2)若中心在原点,焦点在轴上的椭圆经过. 求椭圆焦距的最大值及此时的方程.【说明】本题主要考查直线的斜率、抛物线的切线、两直线平行的位置关系,椭圆的基本性质,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合思想、化归与转化思想解: (1) 设 由的角平分线垂直于轴知,直线与直线的倾斜角互补,从而斜率之和等于,即化简得.3分由点知直线的方程为.分别在其中令及得.5分将的坐标代入中得,即,7分所以8分 (2) 设椭圆的方程为,将,代入,得,9分解得, 由得. 10分椭圆的焦距(或)12分当且仅当时,上式取等号, 故,13分此时椭圆的方程为14分21(本小题满分14分)定义数列: ,且对任意正整数,有.记数列前项和为.(1) 求数列的通项公式与前项和; (2)问是否存在正整数,使得?若存在,则求出所有的正整数对;若不存在,则加以证明.【说明】考查了等差、等比数列的通项公式、求和公式,数列的分组求和等知识,考查了学生变形的能力,推理能力,探究问题的能力,分类讨论的数学思想、化归与转化的思想以及创
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年粤教版高二语文下册月考试卷
- 2025年统编版2024高二语文下册阶段测试试卷含答案
- 2025年苏科版必修2物理上册阶段测试试卷
- 2025年沪教版选修6地理上册阶段测试试卷含答案
- 2025年沪科新版九年级历史下册月考试卷
- 2025年人教版(2024)九年级历史上册月考试卷含答案
- 2025年度住宅小区暖通设备更新换代合同4篇
- 2025年度特色菜系厨师劳动合同模板4篇
- 中英对照2024年服务出口合同样本
- 2025年度木地板施工与室内空气质量保障合同4篇
- 2024公路沥青路面结构内部状况三维探地雷达快速检测规程
- 2024年高考真题-地理(河北卷) 含答案
- 中国高血压防治指南(2024年修订版)解读课件
- 2024年浙江省中考科学试卷
- 2024风力发电叶片维保作业技术规范
- 《思想道德与法治》课程教学大纲
- 2024光储充一体化系统解决方案
- 2024年全国高考新课标卷物理真题(含答案)
- 处理后事授权委托书
- 食材配送服务方案投标方案(技术方案)
- 足疗店营销策划方案
评论
0/150
提交评论