弹性力学答案清晰修改_第1页
弹性力学答案清晰修改_第2页
弹性力学答案清晰修改_第3页
弹性力学答案清晰修改_第4页
弹性力学答案清晰修改_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2-16设有任意形状的等厚度薄板,体力可以不计,在全部边界上(包括孔口边界上)受有均匀压力q试证 及能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条件,因而就是正确的解答。 证明: (1)将应力分量,和分别代入平衡微分方程、相容方程 (a) (b)显然(a)、(b)是满足的(2)对于微小的三角板都为正值,斜边上的方向余弦,将,代入平面问题的应力边界条件的表达式 (c)则有 所以,。对于单连体,上述条件就是确定应力的全部条件。(3)对于多连体,应校核位移单值条件是否满足。 该题为平面应力的情况,首先,将应力分量及代入物理方程,得形变分量, (d)然后,将(d)的变形分量代入几何方程

2、,得, (e)前而式的积分得到 , (f) 其中的和分别是y和x的待定函数,可以通过几何方程的第三式求出,将式(f)代入(e)的第三式得 等式左边只是y的函数,而等式右边只是x的函数。因此,只可能两边都等于同一个常数,于是有,积分以后得,代入(f)得位移分量其中为表示刚体位移量的常数,须由约束条件求得。从式(g)可见,位移是坐标的单值连续函数,满足位移单值条件,因而,应力分量是正确的解答。2-17设有矩形截面的悬臂粱,在自由端受有集中荷载F ,体力可以不计。试根据材料力学公式,写出弯应力和切应力的表达式,并取挤压应力,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示

3、正确的解答。解1矩形悬臂梁发生弯曲变形,任意横截面上的弯矩方程为,横截面对z轴(中性轴)的惯性矩为,根据材料力学公式,弯应力;该截面上的剪力为,剪应力;并取挤压应力(2)经验证,上述表达式能满足平衡微分方程 也能满足相容方程再考察边界条件:在的主要边界上,应精确满足应力边界条件:,;,。能满足在次要边界x=0上,列出三个积分的应力边界条件:满足应力边界条件。在次要边界上,列出三个积分的应力边界条件:满足应力边界条件因此,他们是该问题的解答。3-6如题3-6图所示的墙,高度为h,宽度为b,hb,在两侧面上受到均布剪力q的作用。试用应力函数求解应力分量。解(1)相容条件:将应力函数代人相容方程中,

4、其中, 很明显满足相容方程。(2)应力分量表达式,(3)考察边界条件:在主要边界上,各有两个应精确满足的边界条件,即,。在次要边界上,而的条件不可能精确满足(否则只有A=B=0),可用积分的应力边界条件代替 (4)把各应力分量代入边界条件,得 ,。应力分量为, 3-8设题3-8图中的三角形悬臂梁只受重力作用,而梁的密度为,试用纯三次式的应力函数求解。解(1)相容条件: 设 (a) 不论上述中的系数取何值,纯三次式的应力函数总能满足相容方程。(2)体力分量由应力函数得应力分量的表达式 (b) (c) (d)(3)考察边界条件:利用边界条件确定待定系数先考察主要边界上的边界条件:, 将应力分量式(

5、b)和式(c)代入,这些边界条件要求, 得A=0,B=0。式(b)、(c)、(d)成为 (e) (f) (g)根据斜边界的边界条件,它的边界线方程是,在斜面上没有任何面力,即,按照一般的应力边界条件,有将(e)、(f)、(g)代入得 (h) (i)由图可见, , 代入式(h)、(i)求解C和D,即得,将这些系数代入式(b)、(c)、(d)得应力分量的表达式4-12楔形体在两侧面上受有均布剪力q,如题4-12图所示.试求其应力分量。解 (1)应力函数,进行求解由应力函数得应力分量(2)考察边界条件:根据对称性,得 (a) (b) (c) (d)由式(a)得 (e)由式(b)得 (f)由式(c)得

6、 (g)由式(d)得 (h)式(e)、(f)、(g)、(h)联立求解,得将以上系数代入应力分量,得 4一13设有内半径为r,外半径为R的圆筒受内压力q,试求内半径和外半径的改变,并求圆筒厚度的改变。 解 本题为轴对称问题,只有径向位移而无环向位移。当圆筒只受内压力q的情况下,取应力分量表达式(B=0),内外的应力边界条件要求,由表达式可见,前两个关于的条件是满足的,而后两个条件要求由上式解得, (a)把A,B,C值代入轴对称应力状态下对应的位移分量, (b) (c)式(c)中的取任何值等式都成立,所以个自由项的系数为零H=I=K=0。所以,轴对称问题的径向位移式(b)为,而圆简是属于平面应变问

7、题,故上式中代替,则有 此时内径改变为,外径改变为圆环厚度的改变为4-15在薄板内距边界较远的某一点处,应.力分最为 ,如该处有一小圆孔.试求孔边的最大正应力。解 求出两个主应力,即原来的间题变为矩形薄板在左右两边受均布拉力q而在上下两边受均布压力q,如图所示。应力分量,代入坐标变换式,得到外边界上的边界条件 (a) (b)在孔边,边界条件是 (c) (d)由边界条件式(a)、(b)、(c)、(d)可见,用办逆解法是,可假设为的某一函数乘以,而为的另一函数乘以。而,因此可假设 。 (e)将式(e)带入相容方程,得删去因子以后,求解这个常微分方程,得,其中A,B,C,D为待定常数,代入式(e),

8、得应力函数由应力函数得应力分量的表达式将上式代入应力边界条件由式(a)得 (g)由式(b)得 (h)由式(c)得 (i)由式(d)得 (j)联立求解式,并令,得将各系数值代入应力分量的去达式,得沿着孔边,环向正应力是最大环向正应力为4-17在距表面为h的弹性地基中,挖一直径为d的水平圆形孔道,设hd,弹性地基的密度为,弹性模量为E,泊松比为,试求小圆孔附近的最大、最小应力。解 距地表为h处,无孔时的铅直应力,由水平条件,可得x向为水平回形孔道的轴向,在横向y,z平面的主应力为,(2)原来的问题变为管道在左右两边受均布压力在上下两边受均布压力,在上下两边受均布压力,如图(a)所示。可以将荷载分解

9、为两部分:第一部分是四边的均布压力如图(b)所示,第二部分是左右两边的均布拉力和上下两边的均布压力如图(c)所示。对于第一部分荷载,可应用解答对于第二部分解答,可应用解答,教材中式(4-18)。将两部分解答叠加,即得原荷载作用下的应力分量(基尔斯的解答)。沿着孔边,环向正应力是最大环向正应力为, 8-1设有任意形状的等截面杆,密度为,上端悬挂,下端自由。如题8-1图所示,试考察应力分量是否能满足所有一切条件。解 按应力求解空间问题时,须要使得六个应力分量在弹性体区域内满足平衡徽分方程,满足相容方程;并在边界上满足应力边界条件. (l) 很显然应力分量满足如下平衡徽分方程(2),应力分量也满足贝

10、尔特拉米相容方程 (3)考察应力边界条件:柱体的侧面和下端面,。.在平面上应考虑为任意形状的边界(侧面方向余弦分别为为任意的;在下端面方向余弦分别为)。应用一般的应力边界条件,将应力和面力分量、方向余弦分别代入下式直杆的侧面和下端的应力边界条件都能满足,因此,所给应力分是是本问题的解 8-2设有任意形状的空间弹性体,在全部边界上(包括在孔洞边界上)受有均布压力q,试证应力分量能满足一切条件,因而就是正确的解答。解:应力应满足平衡微分方程,相容方程及应力边界条件(在上),多连体还应满足位移单值条件。(1) 平衡条件 ,很显然,应力分量满足平衡微分方程(2) 相容条件:,应力分量也满足贝尔特拉米相容方程。(3)应力边界条件。考虑一般的应力边界条件:法线的方向余弦为边界面为任意斜面,受到法向压力q的作用。同样,满足应力的边界条件。(4)位移单值条件,为了考虑多连体中的位移单值条件,由应力求出对应的位移,然后再检查是否满足单值条件。将应力分量代人教材中式(7一12

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论