版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.2.1对数与对数运算,第一课时对数,问题提出,1.截止到1999年底,我国人口约13亿.如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?到哪一年我国的人口数将达到18亿?,13(11)x18,求x=?,3.上面的实际问题归结为一个什么数学问题?,2.假设2006年我国国民生产总值为a亿元,如果每年的平均增长率为8%,那么经过多少年我国的国民生产总值是2006年的2倍?,(18)x2,求x=?,已知底数和幂的值,求指数.,对数,知识探究(一):对数的概念,思考1:若24M,则M?若22N,则N?,思考3:满足2x3的x的值,我们用log23表示,即
2、xlog23,并叫做“以2为底3的对数”.那么满足2x16,2x,4x8的x的值可分别怎样表示?,思考4:一般地,如果axN(a0,且a1),那么数x叫做什么?怎样表示?,xlogaN,思考6:满足,,(其中e=2.7182818459045)的x的值可分别怎样表示?这样的对数有什么特殊名称?,思考5:前面问题中,,中的x的值可分别怎样表示?,思考1:当a0,且a1时,若axN,则xlogaN,反之成立吗?,思考2:在指数式axN和对数式xlogaN中,a,x,N各自的地位有什么不同?,知识探究(二):对数与指数的关系,思考3:当a0,且a1时,loga(-2),loga0存在吗?为什么?由此
3、能得到什么结论?,思考4:根据对数定义,logal和logaa(a0,a1)的值分别是多少?,思考5:若axN,则xlogaN,二者组合可得什么等式?,理论迁移,例1.将下列指数式化为对数式,对数式化为指数式:(1)54625;(2)26;(3)()m5.73;(4);(5)lg0.01=;(6)ln102.303.,例2.求下列各式中的值:(1)log64x;(2)logx86;(3)lg100=x;(4)lne2.,作业:P练习:1,.P习题2.A组:1,.,第二课时对数的运算,2.2.1对数与对数运算,问题提出,1.对数源于指数,对数与指数是怎样互化的?,2.指数与对数都是一种运算,而且
4、它们互为逆运算,指数运算有一系列性质,那么对数运算有那些性质呢?,对数的运算,知识探究(一):积与商的对数,思考2:将log232log24十log28推广到一般情形有什么结论?,思考1:求下列三个对数的值:log232,log24,log28你能发现这三个对数之间有哪些内在联系?,思考3:如果a0,且a1,M0,N0,你能证明等式loga(MN)logaM十logaN成立吗?,思考4:将log232log24=log28推广到一般情形有什么结论?怎样证明?,思考5:若a0,且a1,M1,M2,Mn均大于0,则loga(M1M2M3Mn)?,知识探究(二):幂的对数,思考1:log23与log
5、281有什么关系?,思考2:将log281=4log23推广到一般情形有什么结论?,思考3:如果a0,且a1,M0,你有什么方法证明等式logaMnnlogaM成立,思考4:log2x2=2log2x对任意实数x恒成立吗?,思考6:上述关于对数运算的三个基本性质如何用文字语言描述?,思考5:如果a0,且a1,M0,则等于什么?,两数积的对数,等于各数的对数的和;两数商的对数,等于被除数的对数减去除数的对数;幂的对数等于幂指数乘以底数的对数,理论迁移,例1用logax,logay,logaz表示下列各式:;(2).,例2求下列各式的值:(1)log2(4725);(2)lg;(3)log318-
6、log32;(4).,例3计算:,小结作业:性质的等号左端是乘积的对数,右端是对数的和,从左往右看是个降级运算.性质的等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算.性质从左往右仍然是降级运算利用对数的性质可以使两正数的积、商的对数转化为两正数的各自的对数的和、差运算,大大的方便了对数式的化简和求值.,作业:P68练习:1,2,3.P74习题2.2A组:3,4,5.,2.2.1对数与对数运算,第三课时换底公式及对数运算的应用,问题提出,.,(1)(2)(3),(1);(2);(3).,1.对数运算有哪三条基本性质?,2.对数运算有哪三个常用结论?,3.同底数
7、的两个对数可以进行加、减运算,可以进行乘、除运算吗?,4.由得,但这只是一种表示,如何求得x的值?,换底公式及对数运算的应用,知识探究(一):对数的换底公式,思考2:你能用lg2和lg3表示log23吗?,思考1:假设,则,从而有.进一步可得到什么结论?,思考3:一般地,如果a0,且a1;c0,且c1;b0,那么与哪个对数相等?如何证明这个结论?,思考6:换底公式在对数运算中有什么意义和作用?,思考5:通过查表可得任何一个正数的常用对数,利用换底公式如何求的值?,知识探究(二):换底公式的变式,思考1:与有什么关系?,思考2:与有什么关系?,思考3:可变形为什么?,理论迁移,例1计算:(1);
8、(2)(log2125log425log85)(log52log254log1258),作业:P68练习:4.P74习题2.2A组:6,11,12.,2.2.1对数与对数运算,第四课时对数运算习题课,知识回顾,.,1.指数与对数的换算:,2.对数运算的三个常用结论:,3.对数运算的三条基本性质:,4.对数换底公式:,理论迁移,例1求下列各式的值:,2,-2,1,例2已知,求的值.,例3设,已知,求的值.,例420世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越.这就是我们常说的里氏震级M,其计算公式为MlgAl
9、gA0.其中A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);,4.3,20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越.这就是我们常说的里氏震级M,其计算公式为MlgAlgA0.其中A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准振幅是为了修正测震仪距实际震中的距离造成的偏差).(2)5级地震
10、给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1).,398,例5生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7,试推算马王堆古墓的年代.,2193,思考题:设函数已知且对一切恒成立,求的最小值.,2.2.2对数函数及其性质,第一课时对数函数的概念与图象,问题提出,1.用清水漂洗含1个单位质量污垢的衣服,若每次能洗去污垢的四分之三,试写出漂洗次数y与残留污垢x的关系式.,2.(x0)是函数吗?若是,这是什么类型的函数?,对数函数的概念与图象,知识探究(一):对数函数的概念,思考1:在上面的问题中,
11、若要使残留的污垢为原来的,则要漂洗几次?,思考3:函数称为对数函数,一般地,什么叫对数函数?,思考4:为什么在对数函数中要求a0,且al?,思考5:对数函数的定义域、值域分别是什么?,思考6:函数与相同吗?为什么?,思考1:研究对数函数的基本特性应先研究其图象.你有什么方法作对数函数的图象?,知识探究(二):对数函数的图象,思考2:设点P(m,n)为对数函数图象上任意一点,则,从而有.由此可知点Q(n,m)在哪个函数的图象上?,思考3:点P(m,n)与点Q(n,m)有怎样的位置关系?由此说明对数函数的图象与指数函数的图象有怎样的位置关系?,思考4:一般地,对数函数的图象可分为几类?其大致形状如何?,思考5:函数与的图象分别如何?,a1,01时,指、对数函数的图象和性质如下表:你能发现这两个函数有什么内在联系吗?,R,R,当x0时y1;当x0时00;当0x1时y0;当x=1时y=0;在R上是减函数.,思
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版现代化办公室租赁场地合同样本3篇
- 二零二五版精制粉原料供应链风险管理合同3篇
- 二零二五版地震监测基站场地租赁与应急救援合同3篇
- 2025年度医疗健康产业园区承包经营合同范本3篇
- 二零二五版温泉度假酒店SPA服务人员劳动合同3篇
- 二零二五年度离婚经济补偿协议范本及调解服务合同3篇
- 二零二五年度能源项目合作开发PPP模式合同范本3篇
- 物业管理公司2025年度招投标代理合同3篇
- 二零二五年度车位租赁合同:住宅小区车位使用权协议2篇
- 2025厂房买卖合同模板:高端装备制造厂房交易3篇
- 货运企业2025年度安全检查计划
- (日文文书模板范例)请求书-请求书
- 土壤肥料全套课件
- 毕业生延期毕业申请表
- 学校6S管理制度
- 肽的健康作用及应用课件
- T.C--M-ONE效果器使用手册
- 8小时等效A声级计算工具
- 人教版七年级下册数学计算题300道
- 社会实践登记表
- 挖地下室土方工程合同
评论
0/150
提交评论