




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题24锐角三角函数及其应用(56题)一、单选题1.(2024·云南·中考真题)在中,,,,则的值为(
)A. B. C. D.2.(2024·内蒙古包头·中考真题)如图,在矩形中,是边上两点,且,连接与相交于点,连接.若,,则的值为(
)A. B. C. D.3.(2024·四川雅安·中考真题)在数学课外实践活动中,某小组测量一栋楼房的高度(如图),他们在A处仰望楼顶,测得仰角为,再往楼的方向前进50米至B处,测得仰角为,那么这栋楼的高度为(人的身高忽略不计)(
)A.米 B.25米 C.米 D.50米4.(2024·四川资阳·中考真题)第届国际数学教育大会()会标如图所示,会标中心的图案来源于我国古代数学家赵爽的“弦图”,如图所示的“弦图”是由四个全等的直角三角形(,,,)和一个小正方形拼成的大正方形.若,则(
)A. B. C. D.5.(2024·四川达州·中考真题)如图,由8个全等的菱形组成的网格中,每个小菱形的边长均为2,,其中点,,都在格点上,则的值为(
)A.2 B. C. D.36.(2024·四川南充·中考真题)如图,在中,,平分交于点D,点E为边上一点,则线段长度的最小值为(
)A. B. C.2 D.37.(2024·江苏无锡·中考真题)如图,在菱形中,,是的中点,则的值为(
)A. B. C. D.二、填空题8.(2024·四川巴中·中考真题)如图,矩形的对角线与交于点,于点,延长与交于点.若,,则点到的距离为.9.(2024·四川雅安·中考真题)如图,把矩形纸片沿对角线折叠,使点C落在点E处,与交于点F,若,,则的值是.10.(2024·四川资阳·中考真题)在中,,.若是锐角三角形,则边长的取值范围是.11.(2024·福建·中考真题)无动力帆船是借助风力前行的.下图是帆船借助风力航行的平面示意图,已知帆船航行方向与风向所在直线的夹角为,帆与航行方向的夹角为,风对帆的作用力为.根据物理知识,可以分解为两个力与,其中与帆平行的力不起作用,与帆垂直的力仪可以分解为两个力与与航行方向垂直,被舵的阻力抵消;与航行方向一致,是真正推动帆船前行的动力.在物理学上常用线段的长度表示力的大小,据此,建立数学模型:,则.(单位:)(参考数据:)12.(2024·四川眉山·中考真题)如图,斜坡的坡度,在斜坡上有一棵垂直于水平面的大树,当太阳光与水平面的夹角为时,大树在斜坡上的影子长为10米,则大树的高为米.13.(2024·湖南·中考真题)如图,左图为《天工开物》记载的用于春(chōng)捣谷物的工具——“碓(duì)”的结构简图,右图为其平面示意图,已知于点B,与水平线l相交于点O,.若分米,分米.,则点C到水平线l的距离为分米(结果用含根号的式子表示).14.(2024·江西·中考真题)将图所示的七巧板,拼成图所示的四边形,连接,则.15.(2024·山东潍坊·中考真题)如图,在直角坐标系中,等边三角形ABC的顶点的坐标为,点均在轴上.将绕顶点逆时针旋转得到,则点的坐标为.三、解答题16.(2024·黑龙江大庆·中考真题)求值:.17.(2024·湖北·中考真题)小明为了测量树的高度,经过实地测量,得到两个解决方案:方案一:如图(1),测得地与树相距10米,眼睛处观测树的顶端的仰角为:方案二:如图(2),测得地与树相距10米,在处放一面镜子,后退2米到达点,眼睛在镜子中恰好看到树的顶端.已知小明身高1.6米,试选择一个方案求出树的高度.(结果保留整数,)18.(2024·山东泰安·中考真题)(1)计算:;(2)化简:.19.(2024·辽宁·中考真题)如图1,在水平地面上,一辆小车用一根绕过定滑轮的绳子将物体竖直向上提起.起始位置示意图如图2,此时测得点到所在直线的距离,;停止位置示意图如图3,此时测得(点,,在同一直线上,且直线与平面平行,图3中所有点在同一平面内.定滑轮半径忽略不计,运动过程中绳子总长不变.(参考数据:,,,)(1)求的长;(2)求物体上升的高度(结果精确到).20.(2024·四川内江·中考真题)(1)计算:(2)化简:21.(2024·湖南·中考真题)计算:.22.(2024·四川广安·中考真题)计算:.23.(2024·江苏盐城·中考真题)计算:24.(2024·四川遂宁·中考真题)小明的书桌上有一个型台灯,灯柱高,他发现当灯带与水平线夹角为时(图1),灯带的直射宽为,但此时灯的直射宽度不够,当他把灯带调整到与水平线夹角为时(图2),直射宽度刚好合适,求此时台灯最高点到桌面的距离.(结果保留1位小数)()25.(2024·四川泸州·中考真题)计算:.26.(2024·四川自贡·中考真题)计算:27.(2024·重庆·中考真题)如图,甲、乙两艘货轮同时从港出发,分别向,两港运送物资,最后到达港正东方向的港装运新的物资.甲货轮沿港的东南方向航行海里后到达港,再沿北偏东方向航行一定距离到达港.乙货轮沿港的北偏东方向航行一定距离到达港,再沿南偏东方向航行一定距离到达港.(参考数据:,,)(1)求,两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠、两港的时间相同),哪艘货轮先到达港?请通过计算说明.28.(2024·重庆·中考真题)如图,,,,分别是某公园四个景点,在的正东方向,在的正北方向,且在的北偏西方向,在的北偏东方向,且在的北偏西方向,千米.(参考数据:,,)
(1)求的长度(结果精确到千米);(2)甲、乙两人从景点出发去景点,甲选择的路线为:,乙选择的路线为:.请计算说明谁选择的路线较近?29.(2024·四川遂宁·中考真题)计算:.30.(2024·四川巴中·中考真题)某兴趣小组开展了测量电线塔高度的实践活动.如图所示,斜坡的坡度,,在处测得电线塔顶部的仰角为,在处测得电线塔顶部的仰角为.(1)求点离水平地面的高度.(2)求电线塔的高度(结果保留根号).31.(2024·内蒙古赤峰·中考真题)()计算:;()已知,求代数式的值.32.(2024·黑龙江大庆·中考真题)如图,是一座南北走向的大桥,一辆汽车在笔直的公路上由北向南行驶,在处测得桥头在南偏东方向上,继续行驶米后到达处,测得桥头在南偏东方向上,桥头在南偏东方向上,求大桥的长度.(结果精确到米,参考数据:)33.(2024·四川巴中·中考真题)(1)计算:(2)求不等式组的解集.(3)先化简,再求值:,其中34.(2024·内蒙古包头·中考真题)如图,学校数学兴趣小组开展“实地测量教学楼的高度”的实践活动.教学楼周围是开阔平整的地面,可供使用的测量工具有皮尺、测角仪(皮尺的功能是直接测量任意可到达的两点间的距离;测角仪的功能是测量角的大小).(1)请你设计测量教学楼的高度的方案,方案包括画出测量平面图,把应测数据标记在所画的图形上(测出的距离用等表示,测出的角用等表示),并对设计进行说明;(2)根据你测量的数据,计算教学楼的高度(用字母表示).35.(2024·四川资阳·中考真题)如图,某海域有两灯塔A,B,其中灯塔B在灯塔A的南偏东方向,且A,B相距海里.一渔船在C处捕鱼,测得C处在灯塔A的北偏东方向、灯塔B的正北方向.
(1)求B,C两处的距离;(2)该渔船从C处沿北偏东方向航行一段时间后,突发故障滞留于D处,并发出求救信号.此时,在灯塔B处的渔政船测得D处在北偏东方向,便立即以18海里/小时的速度沿方向航行至D处救援,求渔政船的航行时间.(注:点A,B,C,D在同一水平面内;参考数据:,)36.(2024·云南·中考真题)计算:.37.(2024·甘肃兰州·中考真题)单摆是一种能够产生往复摆动的装置,某兴趣小组利用摆球和摆线进行与单摆相关的实验探究,并撰写实验报告如下.实验主题探究摆球运动过程中高度的变化实验用具摆球,摆线,支架,摄像机等实验说明如图1,在支架的横杆点O处用摆线悬挂一个摆球,将摆球拉高后松手,摆球开始往复运动.(摆线的长度变化忽略不计)如图2,摆球静止时的位置为点A,拉紧摆线将摆球拉至点B处,,,;当摆球运动至点C时,,.(点O,A,B,C,D,E在同一平面内)实验图示解决问题:根据以上信息,求的长.(结果精确到)参考数据:,.38.(2024·湖南长沙·中考真题)如图,在中,对角线,相交于点O,.(1)求证:;(2)点E在边上,满足.若,,求的长及的值.39.(2024·陕西·中考真题)如图所示,一座小山顶的水平观景台的海拔高度为,小明想利用这个观景台测量对面山顶C点处的海拔高度,他在该观景台上选定了一点A,在点A处测得C点的仰角,再在上选一点B,在点B处测得C点的仰角,.求山顶C点处的海拔高度.(小明身高忽略不计,参考数据:,,)
40.(2024·江苏扬州·中考真题)(1)计算:;(2)化简:.41.(2024·四川眉山·中考真题)计算:.42.(2024·江苏苏州·中考真题)图①是某种可调节支撑架,为水平固定杆,竖直固定杆,活动杆可绕点A旋转,为液压可伸缩支撑杆,已知,,.(1)如图②,当活动杆处于水平状态时,求可伸缩支撑杆的长度(结果保留根号);(2)如图③,当活动杆绕点A由水平状态按逆时针方向旋转角度,且(为锐角),求此时可伸缩支撑杆的长度(结果保留根号).43.(2024·山东威海·中考真题)某校九年级学生开展利用三角函数解决实际问题的综合与实践活动,活动之一是测量某护堤石坝与地平面的倾斜角.测量报告如下表(尚不完整)课题测量某护堤石坝与地平面的倾斜角成员组长:×××
组员:×××,×××,×××测量工具竹竿,米尺测量示意图说明:是一根笔直的竹竿.点是竹竿上一点.线段的长度是点到地面的距离.是要测量的倾斜角.测量数据…………(1)设,,,,,,,,请根据表中的测量示意图,从以上线段中选出你认为需要测量的数据,把表示数据的小写字母填写在“测量数据”一栏.(2)根据()中选择的数据,写出求的一种三角函数值的推导过程.(3)假设,,,根据()中的推导结果,利用计算器求出的度数,你选择的按键顺序为________.44.(2024·山东潍坊·中考真题)在光伏发电系统运行时,太阳能板(如图1)与水平地面的夹角会对太阳辐射的接收产生直接影响.某地区工作人员对日平均太阳辐射量(单位:)和太阳能板与水平地面的夹角进行统计,绘制了如图2所示的散点图,已知该散点图可用二次函数刻画.(1)求关于的函数表达式;(2)该地区太阳能板与水平地面的夹角为多少度时,日平均太阳辐射量最大?(3)图3是该地区太阳能板安装后的示意图(此时,太阳能板与水平地面的夹角使得日平均太阳辐射量最大),为太阳能板与水平地面的夹角,为支撑杆.已知,是的中点,.在延长线上选取一点,在两点间选取一点,测得,在两点处分别用测角仪测得太阳能板顶端的仰角为,,该测角仪支架的高为1m.求支撑杆的长.(精确到m,参考数据:,)45.(2024·四川凉山·中考真题)计算:.46.(2024·四川凉山·中考真题)为建设全域旅游西昌,加快旅游产业发展.年月日位于西昌主城区东部的历史风貌核心区唐园正式开园,坐落于唐园内的怀远塔乃唐园至高点,为七层密檐式八角砖混结构阁楼式塔楼,建筑面积为平方米,塔顶金碧辉煌,为“火珠垂莲”窣()堵坡造型.某校为了让学生进一步了解怀远塔,组织九年级()班学生利用综合实践课测量怀远塔的高度.小江同学站在如图所示的怀远塔前的平地上点处,测得塔顶的仰角为,眼睛距离地面,向塔前行,到达点处,测得塔顶的仰角为,求塔高.(参考数据:,结果精确到)
47.(2024·江西·中考真题)图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”,如图2,“大碗”的主视图由“大碗”主体和矩形碗底组成,已知,,是太阳光线,,,点M,E,F,N在同一条直线上,经测量,,,.(结果精确到)(1)求“大碗”的口径的长;(2)求“大碗”的高度的长.(参考数据:,,)48.(2024·江苏连云港·中考真题)图1是古代数学家杨辉在《详解九章算法》中对“邑的计算”的相关研究.数学兴趣小组也类比进行了如下探究:如图2,正八边形游乐城的边长为,南门设立在边的正中央,游乐城南侧有一条东西走向的道路,在上(门宽及门与道路间距离忽略不计),东侧有一条南北走向的道路,C处有一座雕塑.在处测得雕塑在北偏东方向上,在处测得雕塑在北偏东方向上.(1)__________,__________;(2)求点到道路的距离;(3)若该小组成员小李出南门O后沿道路向东行走,求她离处不超过多少千米,才能确保观察雕塑不会受到游乐城的影响?(结果精确到,参考数据:,,,,)49.(2024·山东烟台·中考真题)根据收集的素材,探索完成任务.探究太阳能热水器的安装素材一太阳能热水器是利用绿色能源造福人类的一项发明.某品牌热水器主要部件太阳能板需要安装在每天都可以有太阳光照射到的地方,才能保证使用效果,否则不予安装.素材二某市位于北半球,太阳光线与水平线的夹角为α,冬至日时,;夏至日时,.,,,,,,,,素材三如图,该市甲楼位于乙楼正南方向,两楼东西两侧都无法获得太阳光照射.现准备在乙楼南面墙上安装该品牌太阳能板.已知两楼间距为54米,甲楼共11层,乙楼共15层,一层从地面起,每层楼高皆为3.3米,为某时刻的太阳光线.问题解决任务一确定使用数据要判断乙楼哪些楼层不能安装该品牌太阳能板,应选择________日(填冬至或夏至)时,α为________(填,,,中的一个)进行计算.任务二探究安装范围利用任务一中选择的数据进行计算,确定乙楼中哪些楼层不能安装该品牌太阳能热水器.50.(2024·四川成都·中考真题)中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子垂直于地面,长8尺.在夏至时,杆子在太阳光线照射下产生的日影为;在冬至时,杆子在太阳光线照射下产生的日影为.已知,,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:,,,,,)
51.(2024·四川广安·中考真题)风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在某地安装了一批风力发电机,如图(1)某校实践活动小组对其中一架风力发电机的塔杆高度进行了测量,图(2)为测量示意图(点,,,均在同一平面内,).已知斜坡长为20米,斜坡的坡角为,在斜坡顶部处测得风力发电机塔杆顶端点的仰角为,坡底与塔杆底的距离米,求该风力发电机塔杆的高度.(结果精确到个位;参考数据:,,,)
52.(2024·四川达州·中考真题)“三汇彩婷会”是达州市渠县三汇镇独有的传统民俗文化活动、起源于汉代、融数学,力学,锻造,绑扎,运载于一体,如图1,在一次展演活动中,某数学综合与实践小组将彩婷抽象成如图2的示意图,是彩婷的中轴、甲同学站在处.借助测角仪观察,发现中轴上的点的仰角是,他与彩婷中轴的距离米.乙同学在观测点处借助无人机技术进行测量,测得平行于水平线,中轴上的点的仰角,点、之间的距离是米,已知彩婷的中轴米,甲同学的眼睛到地面的距离米,请根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年证券从业资格证考试内容简介试题及答案
- 注册会计师培训课程设定试题及答案
- 深度回归项目管理考试内容的背景与原理探索试题及答案
- 注册会计师考试期间有效提升学习效率的方法试题及答案
- 2025年注册会计师考试心智策略试题及答案
- 微生物影响因素及其应对策略试题及答案
- 学习要领2025年证券从业资格证考试试题及答案
- 2025年家纺用品合作协议书
- 电子装联专用设备企业ESG实践与创新战略研究报告
- 微穿孔板消声器企业ESG实践与创新战略研究报告
- 中国反恐形势的现状和对策分析研究
- 篮球协会章程和规章制度
- 国开电大-工程数学(本)-工程数学第4次作业-形考答案
- 技师学院高层次人才引进和管理办法
- 2023年司法考试真题及答案
- 异步电动机变频调速控制系统设计与实践-电力电子综合课设
- 水轮机选型毕业设计及solidworks建立转轮模型
- 2023年全国结核病临床诊疗技能竞赛基础知识
- 无创正压通气急诊临床实践专家共识
- 《高速铁路工程测量规范》TB10601-2009(复核后)
- 抚顺达路旺复合新材料有限公司年产24万吨可发性聚苯乙烯项目环境影响报告
评论
0/150
提交评论