




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃肃兰州市第五十一中学2025届高三下学期三诊模拟数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是()A. B. C. D.2.若复数满足(为虚数单位),则其共轭复数的虚部为()A. B. C. D.3.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A. B. C. D.4.为得到函数的图像,只需将函数的图像()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向左平移个长度单位5.已知集合,则元素个数为()A.1 B.2 C.3 D.46.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为()尺.A. B. C. D.7.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有()A.120种 B.240种 C.480种 D.600种8.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增 B.函数的周期是C.函数的图象关于点对称 D.函数在上最大值是19.己知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为()A. B.C. D.10.设点是椭圆上的一点,是椭圆的两个焦点,若,则()A. B. C. D.11.一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是()A. B. C. D.12.已知非零向量,满足,,则与的夹角为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,,则___________.14.在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有________种.(用数字作答)15.若复数满足,其中是虚数单位,是的共轭复数,则________.16.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则sin(π﹣α)的值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵,,若矩阵,求矩阵的逆矩阵.18.(12分)如图,在平面直角坐标系中,椭圆的离心率为,且过点.求椭圆的方程;已知是椭圆的内接三角形,①若点为椭圆的上顶点,原点为的垂心,求线段的长;②若原点为的重心,求原点到直线距离的最小值.19.(12分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.20.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的极小值;(3)求函数的零点个数.21.(12分)如图,已知抛物线:与圆:()相交于,,,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.22.(10分)每年的寒冷天气都会带热“御寒经济”,以交通业为例,当天气太冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:℃)与网上预约出租车订单数(单位:份);日平均气温(℃)642网上预约订单数100135150185210(1)经数据分析,一天内平均气温与该出租车公司网约订单数(份)成线性相关关系,试建立关于的回归方程,并预测日平均气温为时,该出租车公司的网约订单数;(2)天气预报未来5天有3天日平均气温不高于,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求恰有1天网约订单数不低于210份的概率.附:回归直线的斜率和截距的最小二乘法估计分别为:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
画出直观图,由球的表面积公式求解即可【详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【点睛】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.2.D【解析】
由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【详解】由zi=1﹣i,∴z=,所以共轭复数=-1+,虚部为1故选D.【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题.3.D【解析】双曲线的渐近线方程是,所以,即,,即,,故选D.4.D【解析】,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D5.B【解析】
作出两集合所表示的点的图象,可得选项.【详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,故选:B.【点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.6.B【解析】如图,已知,,
∴,解得
,∴,解得
.∴折断后的竹干高为4.55尺故选B.7.B【解析】
首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【详解】将周一至周五分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【点睛】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.8.A【解析】
根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【详解】将横坐标缩短到原来的得:当时,在上单调递增在上单调递增,正确;的最小正周期为:不是的周期,错误;当时,,关于点对称,错误;当时,此时没有最大值,错误.本题正确选项:【点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.9.A【解析】
根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.【详解】依题意如图所示:取的中点,则是等腰梯形外接圆的圆心,取是的外心,作平面平面,则是四棱锥的外接球球心,且,设四棱锥的外接球半径为,则,而,所以,故选:A.【点睛】本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.10.B【解析】∵∵∴∵,∴∴故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.11.D【解析】
因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线可解得.【详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线方程得:,即,由得.故选:.【点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平.12.B【解析】
由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.【详解】根据平面向量数量积的垂直关系可得,,所以,即,由平面向量数量积定义可得,所以,而,即与的夹角为.故选:B【点睛】本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
因为,所以,又,所以,则,所以.14.【解析】
首先选派男医生中唯一的主任医师,由题意利用排列组合公式即可确定不同的选派案方法种数.【详解】首先选派男医生中唯一的主任医师,然后从名男医生、名女医生中分别抽调2名男医生、名女医生,故选派的方法为:.故答案为.【点睛】解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).15.【解析】
设,代入已知条件进行化简,根据复数相等的条件,求得的值.【详解】设,由,得,所以,所以.故答案为:【点睛】本小题主要考查共轭复数,考查复数相等的条件,属于基础题.16.【解析】
计算sinα,再利用诱导公式计算得到答案.【详解】由题意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案为:.【点睛】本题考查了三角函数定义,诱导公式,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17..【解析】试题分析:,所以.试题解析:B.因为,所以.18.;①;②.【解析】
根据题意列出方程组求解即可;①由原点为的垂心可得,轴,设,则,,根据求出线段的长;②设中点为,直线与椭圆交于,两点,为的重心,则,设:,,,则,当斜率不存在时,则到直线的距离为1,,由,则,,,得出,根据求解即可.【详解】解:设焦距为,由题意知:,因此,椭圆的方程为:;①由题意知:,故轴,设,则,,,解得:或,,不重合,故,,故;②设中点为,直线与椭圆交于,两点,为的重心,则,当斜率不存在时,则到直线的距离为1;设:,,,则,,则,则:,,代入式子得:,设到直线的距离为,则时,;综上,原点到直线距离的最小值为.【点睛】本题考查椭圆的方程的知识点,结合运用向量,韦达定理和点到直线的距离的知识,属于难题.19.(1);(2)【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.详解:(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.20.(1);(2)极小值;(3)函数的零点个数为.【解析】
(1)求出和的值,利用点斜式可得出所求切线的方程;(2)利用导数分析函数的单调性,进而可得出该函数的极小值;(3)由当时,以及,结合函数在区间上的单调性可得出函数的零点个数.【详解】(1)因为,所以.所以,.所以曲线在点处的切线为;(2)因为,令,得或.列表如下:0极大值极小值所以,函数的单调递增区间为和,单调递减区间为,所以,当时,函数有极小值;(3)当时,,且.由(2)可知,函数在上单调递增,所以函数的零点个数为.【点睛】本题考查利用导数求函数的切线方程、极值以及利用导数研究函数的零点问题,考查分析问题和解决问题的能力,属于中等题.21.(1)(2)点的坐标为【解析】
将抛物线方程与圆方程联立,消去得到关于的一元二次方程,抛物线与圆有四个交点需满足关于的一元二次方程在上有两个不等的实数根,根据二次函数的有关性质即可得到关于的不等式组,解不等式即可.不妨设抛物线与圆的四个交点坐标为,,,,据此可表示出直线、的方程,联立方程即可表示出点坐标,再根据等腰梯形的面积公式可得四边形的面积的表达式,令,由及知,对关于的面积函数进行求导,判断其单调性和最值,即可求出四边形的面积取得最大值时的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合同纠纷解决样本
- 2025年铝锻压材合作协议书
- 2025中英文翻译模板企业设备租赁合同(上海工业发展银行)
- 2025租房代理合同如何签订
- 2025标准的汽车消费借款合同范本
- 2025委托招聘的劳动合同
- 2025合同案例:销售协议无法替代劳动合同的规定解析
- 2025年雄烯二酮项目建议书
- 2025租房代理合同范文
- 2025年石油钻井泥浆固控设备项目合作计划书
- 2025-2030中国射频治疗设备行业市场发展前景及发展趋势与投资风险研究报告
- 砼构件预制件的模具设计与制造技术考核试卷
- 《跨行业并购问题研究的理论基础与文献综述》6300字
- 2025中煤鄂尔多斯能源化工有限公司高校毕业生招聘98人笔试参考题库附带答案详解
- 2025年保密观考试题库及答案
- 导游知识培训课件
- 西师大版小学五年级数学(下)期中测试题(1-4单元)(2)(含答案)
- 用户思维在产品创新中的应用案例
- 2025《四川省建设工程施工总包合同》示范文本
- 生物分离工程第四章膜分离技术.ppt
- +770甩车场设计
评论
0/150
提交评论