




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年中考数学一轮复习
第30讲尺规作图
一.选择题(共10小题)
1
1.如图,已知线段/2=6,小欣进行了如下操作:以线段A8的中点。为圆心,5aB的长为半径画弧,
再以点/为圆心,。/的长为半径画弧,两弧交于点C,连接/C,BC,则8C的长为()
A.1.5B.3C.3V3D.6
2.如图,依据尺规作图痕迹,若//。£=64°,/BAC=50°,则//C2的度数为()
3.如图,在△/BC中,/A4c=90°,/8=30°,/C=4.以点/为圆心,以/。长为半径作弧,交BC
于点。;再分别以点C和点。为圆心,以大于长为半径作弧,两弧相交于点£,作射线/£交3c
于点F,则BF的长为()
C.7D.8
4.如图,在矩形中,以点8为圆心,8C的长为半径画弧,交AD于点E,再分别以点C,£为圆
1_
心,大于的长为半径画弧,两弧交于点R作射线AF交CD于点G.若AB=8,2C=10,则CG
长为()
AED
BC
10LV6
A.5B.—C.2V2D.—
32
5.下列三幅图都是“作已知三角形的高”的尺规作图过程,其中作图正确的是()
外太
BG、、3"HCBHC
(i)⑵"
(3)
A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)
1
6.如图,在已知的△48C中,按以下步骤作图:①分别以3,C为圆心,以大于长为半径作弧,两
弧相交于两点M,N-,②作直线九W交于点。,连接CD若CD=4D,ZB=25°,则下列结论中
错误的是()
A忘卜B
A.ZACD=65°B.ZACB=90°
C.ZCAD=50°D.点。是△/8C的外心
7.综合实践课上,嘉嘉画出NZO5,如图1,利用尺规作图作的角平分线OP.其作图过程如下:
(1)如图2,在射线。4上取一点。(不与点。重合),^ZADC^ZAOB,且点C落在//O3内部;
(2)如图3,以点。为圆心,以。。长为半径作弧,交射线DC于点尸,作射线。尸,射线。尸就是/
AOB的平分线.
AAA
Si图2图3
在嘉嘉的作法中,判断射线OP是的平分线过程中不可能用到的依据是()
A.同位角相等,两直线平行
B.两直线平行,内错角相等
C.等边对等角
D.到角两边距离相等的点在这个角的角平分线上
下列说法正确的是()
A.嘉嘉的作法正确,淇淇的作法不正确
B.嘉嘉的作法不正确,淇淇的作法正确
C.嘉嘉和淇淇的作法都正确
D.嘉嘉和淇淇的作法都不正确
9.如图,在RtZk/BC中,ZACB=90°,/C=6,BC=8,以点/为圆心,NC长为半径画弧,交48于
1_
点。,再分别以8、。为圆心、大于5BD的长为半径画弧,两弧交于两点M、N,作直线分别交48、
3c于点E、F,则线段BE的长为()
10.如图,对于△/BC的已知条件,老师按照下面步骤作图:
(1)以/圆心,长为半径画弧;
(2)以C为圆心,C8长为半径画弧,两弧相交于点。;
(3)连接2D,与/C交于点E,连接ND,CD.
小张等几个同学得出以下结论,其中正确的是()
①△4BC之△4DC;
②四边形ABCD是中心对称图形;
③4c是BD的中垂线;
④8。平分/48C.
A.①②B.②③C.①③D.③④
二.填空题(共5小题)
一1_
11.如图,在△/8C中,N/=90°,分别以点2和点C为圆心,大于]BC的长为半径画弧,两弧相父于
M,N两点;作直线交于点E.若/2=16,/C=8,则AE1长为
12.如图,在△4BC中,ZACB=90°.
①以点/为圆心,适当长为半径画弧,分别与/C,48相交于点Mi,跖;分别以Mi,扬为圆心,大
1一
于产的长为半径画弧,两弧相交于点作射线
1
②以点B为圆心,适当长为半径画弧,分别与BC,AB相交于点M,N2分别以Ni,M为圆心,大于5MN2
的长为半径画弧,两弧相交于点N;作射线与射线相交于点P.
③连接CP.
根据以上作图,若点尸到直线Z8的距离为1,则线段CP的长为.
13.如图是某位同学用带有刻度的直尺在数轴上作图的方法,若图中的虚线相互平行,则点尸表示的数
1_
14.如图,口/BCD的对角线交于点。.分别以点/、3为圆心,大于5AB的长为半径画弧,两弧交于£、
下两点;作直线所交48于点G,连接。G.若AD=5,则OG=
15.如图,长方形纸片4BCD中,点E是CD的中点,连接NE.按以下步骤作图:①分别以点/和点£
1
为圆心,以大于54E的长为半径作弧,两弧相交于点M和点N;②作直线且直线刚好经过
点、B.若。£=3,则3c的长度是.
16.如图,在5X5的方格纸中,每个小正方形的边长都为1,点/,2位于格点处.
(1)分别在图1,图2中画出两个不全等的格点△N3C,使其内部(不含边)均有2个格点.
(2)任选一个你所画的格点△/3C,判断其是否为等腰三角形并说明理由.
图1图2
17.如图,RtzX/BC中,ZACB=9Q°.
(1)请仅用无刻度的直尺和圆规在△/BC内求作点。,使/BCD=/CAD=30°(保留作图痕迹,不
写作法);
(2)在(1)的条件下,延长CO交Z5于点77,若77为N2中点且/8=8,求△/CD的面积.
18.如图,AE//BF,AC平分NBAE,且交59于点C.
(1)作N/2下的平分线交/£于点。(尺规作图,保留痕迹,不写作法);
(2)根据(1)中作图,连接CO,求证:四边形/BCD是菱形.
r
19.如图,在口48。中,8。是对角线.
(1)利用尺规作线段BD的垂直平分线,垂足为点。,交边4D于点E,交边BC于点尸(要求:尺规
作图并保留作图痕迹,不写作法,标明字母);
(2)试猜想线段3尸与的数量关系,并加以证明.
20.如图,在平面直角坐标系中,点/(4,0),点B(l,遮),点。在线段。区上.
(1)读下面的语句,并完成作图(要求:尺规作图,保留作图痕迹)
①过点C作CD//OB交AB于点D,延长CD并截取CE=OB;
②过点£作斯,CE,交x轴于点尸.
(2)求证:△CEF24OR4.
2025年中考数学一轮复习
第30讲尺规作图
一.选择题(共10小题)
1
1.如图,已知线段/2=6,小欣进行了如下操作:以线段A8的中点。为圆心,5人3的长为半径画弧,
再以点/为圆心,。/的长为半径画弧,两弧交于点C,连接/C,BC,则8C的长为()
;
AOB
A.1.5B.3C.3V3D.6
【考点】作图一基本作图;线段垂直平分线的性质.
【专题】作图题;等腰三角形与直角三角形;推理能力.
【答案】C
【分析】连接OC,由作图知,AC=OA=OC=OB,根据等边三角形的性质和直角三角形的判定和性质以
及勾股定理即可得到结论.
【解答】解:连接。C,
由作图知,AC=O4=OC=OB,
是等边三角形,ZB=ZBCO,
:.ZAOC^60°,
:.ZB+ZBCO=ZAOC=60°,
Z5=30°,
:.ZACB=90°,
":AB=6,
:.AC=^AB=^x6=3,
:.BC=y/AB2-AC2=3V3,
故选:C.
【点评】本题考查了作图-基本作图,等边三角形的判定和性质,直角三角形的判定和性质,正确地判断
出△NBC是直角三角形是解题的关键.
2.如图,依据尺规作图痕迹,若//£>£=64°,ZBAC=50°,则//C8的度数为()
A
A.50°B.60°C.66°D.80°
【考点】作图一基本作图.
【专题】三角形;尺规作图;几何直观.
【答案】C
【分析】由作图痕迹可知,所作为线段的垂直平分线和N/8C的平分线,可得AD=BD,ZABD=Z
CBD,则/幺BD=NBAD=NCBD.根据乙48。+/8/。=64°,可得/48C=64°,再结合三角
形内角和定理可得答案.
【解答】解:由作图痕迹可知,所作为线段N3的垂直平分线和N/3C的平分线,
:.AD=BD,ZABD^ZCBD,
:./ABD=ZBAD=ZCBD.
:/ADE=ZABD+ABAD=64°,
/ABC=ZABD+ZCBD^ZABD+ZBAD^64a,
...//C2=180°-/ABC-NBAC=66°.
故选:C.
【点评】本题考查作图一基本作图、线段垂直平分线的性质、角平分线的定义、三角形内角和定理,熟练
掌握线段垂直平分线的性质、角平分线的定义、三角形内角和定理是解答本题的关键.
3.如图,在△NBC中,/BAC=90°,NB=30°,NC=4.以点/为圆心,以/C长为半径作弧,交BC
1
于点。;再分别以点C和点。为圆心,以大于yc长为半径作弧,两弧相交于点E,作射线NE交8C于
点、F,则3斤的长为()
A
【考点】作图一基本作图;含30度角的直角三角形.
【专题】作图题;等腰三角形与直角三角形;推理能力.
【答案】B
【分析】根据直角三角形的性质和特殊角的三角函数即可得到结论.
【解答】解:由作图知,AFLBC,
VZBAC=90°,ZB=30°,AC=4.
:.AB=V3yiC=4V3,
':AF±BC,
:.ZAFB=9Q°,
:.BF=苧4B=字x4百=6,
故选:B.
【点评】本题考查了作图-基本作图,解决本题的关键是理解作图过程.
4.如图,在矩形N5CD中,以点2为圆心,8C的长为半径画弧,交AD于点、E,再分别以点C,E为圆
心,大于gcE的长为半径画弧,两弧交于点尸,作射线3尸交CD于点G.若/2=8,3c=10,则CG长
V6
C.2V2D.
2
【考点】作图一基本作图;矩形的性质.
【专题】矩形菱形正方形;尺规作图;几何直观;运算能力.
【答案】A
【分析】连接EG,由尺规作图过程可知,BE=BC=1G,3尸为NE2C的平分线,可证明△BEG会/XBCG,
则CG=EG,由矩形的性质及勾股定理可得/E=VBE2-AB2=6,DE=4,设CG=EG=x,则DG=8-x,
在Rt^DEG中,由勾股定理可列方程为,=42+(8-x)2,解方程即可.
【解答】解:连接EG,
由尺规作图过程可知,BE=BC=10,3尸为NE2C的平分线,
ZEBG=ZCBG,
,:BG=BG,
:./\BEG^/\BCG(SAS),
:.CG=EG,
:四边形/BCD为矩形,
ZA^ZD=90°,CD=AB=8,AD=BC=10,
:.AE=y/BE2-AB2=6,
:.DE=AD-AE=4,
设CG=EG=x,
则DG=CD-CG=8-x,
在RtZXDEG中,由勾股定理得,EG1=DE~+DG1,
即X2=42+(8-x)2,
解得x=5,
CG长为5.
故选:A.
4D
【点评】本题考查作图-基本作图、矩形的性质、全等三角形的判定与性质、勾股定理,解题的关键是理
解题意,灵活运用所学知识解决问题.
5.下列三幅图都是“作已知三角形的高”的尺规作图过程,其中作图正确的是()
A.(1)(2)(3)B.
【考点】作图一基本作图.
【专题】作图题;几何直观;应用意识.
【答案】A
【分析】根据作已知三角形的高的作图方法判定即可.
【解答】解:图(1)和图(2)中,由“到线段两端距离相等的点在线段的垂直平分线上”可知,4/垂直
平■分GH,垂直平分NK,故作图正确;
图(3)中,依据“直径所对的圆周角等于90。”可知,5。所对的圆周角为直角,故作图正确;
故选:A.
【点评】本题主要考查了作图-基本作图,掌握利用尺规作图作高的方法是解决问题的关键.
1
6.如图,在已知的△NBC中,按以下步骤作图:①分别以3,。为圆心,以大于58c长为半径作弧,两
弧相交于两点N;②作直线交N5于点D,连接CD.若CD=4D,ZB=25°,则下列结论中错
误的是()
A.ZACD=65°B.乙4cB=90°
C.ZCAD=50°D.点。是△/8C的外心
【考点】作图一基本作图;线段垂直平分线的性质;三角形的外接圆与外心.
【专题】作图题;推理能力.
【答案】C
【分析】由题意可知直线MN是线段2。的垂直平分线,故BN=CN,/B=NC,故可得出/CD/的度数,
根据C0=4D可知/DC4=NC4。,故可得出/C/。的度数,进而可得出结论.
【解答】解:•.,由题意可知直线是线段的垂直平分线,
:.BD=CD,ZB=ZBCD,
":NB=25
:./B=NBCD=25°,
:.ZCDA=250+25°=50°.
VCD=AD,
1800-50°
=65°,
/ACD=/CAD=2
正确,C错误;
":CD=AD,BD=CD,
:.CD=AD=BD,
...点。为△A8C的外心,故。正确;
VZACD=65°,ZBCD=25°,
AZACB=65°+25°=90°,故2正确.
故选:C.
【点评】本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.
7.综合实践课上,嘉嘉画出N/O8,如图1,利用尺规作图作的角平分线。尸.其作图过程如下:
(1)如图2,在射线。/上取一点D(不与点。重合),作且点C落在//O3内部;
(2)如图3,以点。为圆心,以。。长为半径作弧,交射线。C于点尸,作射线OP,射线OP就是/NO8
的平分线.
在嘉嘉的作法中,判断射线。尸是NNO8的平分线过程中不可能用到的依据是()
A.同位角相等,两直线平行
B.两直线平行,内错角相等
C.等边对等角
D.到角两边距离相等的点在这个角的角平分线上
【考点】作图一复杂作图;角平分线的性质.
【专题】作图题;线段、角、相交线与平行线;几何直观;推理能力.
【答案】D
【分析】观察作图步骤,写出证明过程即可得到答案.
【解答】解:观察作图步骤可知,证明射线。尸是的平分线的过程如下:
/ADC=/AOB,
:.DC//OB,
:./DPO=NPOB,
':DO=DC,
ZDPO=ZDOP,
:.NPOB=/DOP,
,射线OP就是的平分线,
在证明过程中,没有用到“到角两边距离相等的点在这个角的角平分线上
故选:D.
【点评】本题考查作图-复杂作图,解题的关键是掌握平行线性质和判定,等腰三角形性质等知识.
8.已知直线P0,嘉嘉和淇淇想画出尸。的平行线,他们的作法如下(图1和图2):
线重合,贝!
下列说法正确的是()
A.嘉嘉的作法正确,淇淇的作法不正确
B.嘉嘉的作法不正确,淇淇的作法正确
C.嘉嘉和淇淇的作法都正确
D.嘉嘉和淇淇的作法都不正确
【考点】作图一基本作图;平行线的判定;平行线的性质.
【专题】作图题;线段、角、相交线与平行线;推理能力.
【答案】C
【分析】根据题意,嘉嘉利用同旁内角互补得出两直线平行,淇淇利用同位角相等得出两直线平行.
【解答】解:嘉嘉:斜边2C与量角器的60°刻度线重合,
NBCQ=60°
又:直角板N/C8=30°,
AZACQ=90°,
:.AB//PQ,
则嘉嘉的作法正确,
淇淇:':ZCAB=ZAPQ,
C.AB//PQ,
则淇淇的作法正确,
故选:C.
【点评】本题主要考查了作图一基本作图,平行线的判定,平行线的性质,解题的关键是掌握相关知识的
灵活运用.
9.如图,在中,ZACB=90°,AC=6,5c=8,以点/为圆心,NC长为半径画弧,交N8于
11_
点。,再分别以3、。为圆心、大于的长为半径画弧,两弧交于两点M、N,作直线"N分别交/2、
3c于点£、F,则线段的长为()
A
【考点】作图一基本作图;线段垂直平分线的性质.
【专题】线段、角、相交线与平行线;尺规作图;几何直观.
【答案】C
【分析】先利用勾股定理求出及做法求出BD,BE=DE,即可得的答案.
【解答】解:在RtZ\48C中,ZACB=90°,AC=6,BC=3,
:.AB=-JAC2+BC2=10.
:以点4为圆心、/C长为半径画弧,交4B于点、D,
:.AD=AC=6,BD=AB-AD=4,
:分别以3、。为圆心、大于8。的长为半径画弧,两弧交于M,N,作直线
是线段AD的垂直平分线.
:.BE=DE=2.
故选:C.
【点评】本题主要考查了基本作图,线段垂直平分线的性质,掌握线段垂直平分线的做法是解决本题的关
键.
10.如图,对于△/8C的已知条件,老师按照下面步骤作图:
(1)以/圆心,长为半径画弧;
(2)以C为圆心,C8长为半径画弧,两弧相交于点。;
(3)连接助,与/C交于点E,连接CD.
小张等几个同学得出以下结论,其中正确的是()
①△4BCd4DC;
②四边形ABCD是中心对称图形;
③4c是BD的中垂线;
④平分/4BC.
A.①②B.②③C.①③D.③④
【考点】作图一复杂作图;中心对称图形;全等三角形的判定;线段垂直平分线的性质.
【专题】线段、角、相交线与平行线;三角形;图形的全等;平移、旋转与对称;几何直观.
【答案】C
【分析】利用作法可判断/C垂直平分3,则可对①③进行判断;利用“SSS”可对③进行判断;通过
说明//ADWNCB。可对④进行判断.
【解答】解:禾!J用/8=NC,CD=CB,/C为公共边,所以所以①正确;
由作法得CB=CD,则/C垂直平分AD,点8与点。关于点E对称,而点/与点。不关于E
对称,所以②错误,③正确;
由于/。与8c不平行,则N/D5W/C8D,1^ZADB=ZABD,则//8OW/C8。,所以④错误.
所以正确的是①③.
故选:C.
【点评】本题考查了作图-复杂作图,中心对称图形,垂直平分线的性质以及全等三角形的判定,掌握相
关定义是解答本题的关键.
二.填空题(共5小题)
1_
11.如图,在△NBC中,ZA=90°,分别以点8和点C为圆心,大于]BC的长为半径画弧,两弧相交于
M,N两点;作直线九W交于点E.若/8=16,AC=8,则BE长为10.
【考点】作图一基本作图;线段垂直平分线的性质.
【专题】作图题;等腰三角形与直角三角形;推理能力.
【答案】10.
【分析】连接CE,根据线段垂直平分线的性质和勾股定理即可得到结论.
【解答】解:连接CE,
由作图知,直线九W是线段3c的垂直平分线,
:.CE=BE,
设CE=BE=x,
VZA=90°,AE=16-x,AC=8782+(16-x)2,
BE=CE—y/AC2+AE2—y/82+(16—x)2—x,
解得x=10,
:,BE=]0,
故答案为:10.
【点评】本题考查作图-基本作图,线段的垂直平分线的性质,勾股定理,解题的关键是证明CE=2£.
12.如图,在△48C中,ZACB=9Q°.
①以点/为圆心,适当长为半径画弧,分别与ZC,48相交于点Ml,M2;分别以Mi,“2为圆心,大于
1一
跖的长为半径画弧,两弧相父于点M;作射线
1
②以点2为圆心,适当长为半径画弧,分别与2C,48相交于点Ni,M分别以Ni,做为圆心,大于5MN2
的长为半径画弧,两弧相交于点N;作射线3N,与射线相交于点P.
③连接CP.
根据以上作图,若点尸到直线的距离为1,则线段CP的长为
【考点】作图一复杂作图;点到直线的距离.
【专题】作图题;几何直观;推理能力.
【答案】V2.
【分析】过尸点作尸于。点,PELBC于E点、,如图,根据点到直线的距离得到PE=1,利用基本
作图得到依平分N48C,PC平分N/C2,则根据角平分线的性质得到尸尸=PE=1,/PC尸=45°,从而
可判断△PCF为等腰直角三角形,所以PC=立PF.
【解答】解:过尸点作尸于。点,PELBC于E点、,如图,则尸£=1,
由作法得依平分N4BC,PC平分N/C3,
:.PF=PE=\,ZPCF=45°,
...△尸CF为等腰直角三角形,
:.PC=正PF=V2.
故答案为:V2.
【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何
图形的性质和基本作图方法.也考查了角平分线的性质.
13.如图是某位同学用带有刻度的直尺在数轴上作图的方法,若图中的虚线相互平行,则点P表示的数是
10
【考点】作图一复杂作图;数轴.
【专题】实数;线段、角、相交线与平行线;几何直观;运算能力.
_10
【答案】y.
X1
【分析】设点P表示的数为X,根据平行线分线段成比例可得,求出X的值,即可得答案.
10-x2
【解答】解:设点P表示的数为X,
x1
根据平行线分线段成比例可得,--=
10—%2
解得X=孚
经检验:x=¥是原方程的解且符合题意,
...点P表示的数是孝.
故答案为:孝.
【点评】本题考查数轴、平行线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.
1一
14.如图,n/BCD的对角线交于点。.分别以点/、5为圆心,大于万A8的长为半径画弧,两弧交于£、
下两点;作直线斯交48于点G,连接。G.若AD=5,则。G=_|i
【考点】作图一基本作图;线段垂直平分线的性质;平行四边形的性质.
【专题】作图题;几何直观;推理能力.
【答案】|.
【分析】利用基本作图可判断M垂直平分N5,则NG=BG,再根据平行四边形的性质得到。8=。。,然
后根据三角形中位线性质求解.
【解答】解:由作法得访垂直平分N瓦
:,AG=BG,
・・・四边形为平行四边形,
:.OB=OD,
:.OG为AABD的中位线,
:.OG^^AD=^.
故答案为:|.
【点评】本题考查了作图-基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了线段垂直平分
线的性质和平行四边形的性质.
15.如图,长方形纸片A8CD中,点E是CD的中点,连接AB.按以下步骤作图:①分别以点/和点£
1
为圆心,以大于的长为半径作弧,两弧相交于点M和点N;②作直线且直线刚好经过点B.若
DE=3,则BC的长度是3取.
A'
【考点】作图一基本作图;线段垂直平分线的性质;矩形的性质.
【专题】作图题;几何直观;推理能力.
【答案】见试题解答内容
【分析】先利用矩形的性质得到NB=CD=6,ZC=90°,再利用基本作图得MN垂直平分则根据
线段垂直平分线的性质得到BE=BA=6,然后利用勾股定理可计算出BC的长.
【解答】解::点£是CD的中点,
:.CE=DE=3,
•.•四边形为矩形,
:.AB=CD=6,ZC=90°,
由作法得MN垂直平分AE,
:.BE=BA=6,
在RtABCE中,BC=VFE2-CE2=V62-32=3百.
【点评】本题考查了作图-基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了线段垂直平分
线的性质和矩形的性质.
三.解答题(共5小题)
16.如图,在5义5的方格纸中,每个小正方形的边长都为1,点/,8位于格点处.
(1)分别在图1,图2中画出两个不全等的格点△A8C,使其内部(不含边)均有2个格点.
(2)任选一个你所画的格点△/2C,判断其是否为等腰三角形并说明理由.
图1图2
【考点】作图一应用与设计作图;全等三角形的判定;等腰三角形的判定.
【专题】网格型;几何直观.
【答案】(1)见解析;
(2)图1,图2中的三角形/8C都为等腰三角形,理由见解析.
【分析】(1)根据全等三角形的判定结合勾股定理以及网格作出图形即可;
(2)根据勾股定理以及等腰三角形的判定即可求解.
【解答】解:(1)图1,图2中画出两个不全等的格点△/8C如图所示;
(2)图1,图2中的三角形/8C都为等腰三角形,理由如下:
如图1,'I?+22=BC,
三角形/8C为等腰三角形;
如图2,':BC=V32+I2=AB,
三角形ABC为等腰三角形.
【点评】本题考查了作图-应用设计作图,全等三角形的判定,等腰三角形的判定,熟记全等三角形的判
定,等腰三角形的判定是解题的关键.
17.如图,RtZ\/BC中,ZACB=90°.
(1)请仅用无刻度的直尺和圆规在△/8C内求作点D,使N3CO=NC4D=30°(保留作图痕迹,不写
作法);
(2)在(1)的条件下,延长CD交48于点“,若,为中点且/8=8,求△/CD的面积.
【考点】作图一复杂作图;三角形的面积;直角三角形的性质;勾股定理.
【专题】作图题;三角形;解直角三角形及其应用;几何直观;推理能力.
【答案】(1)见解析;
(2)2V3.
【分析】(1)先作NC的垂直平分线,再以NC的中点。为圆心,/。为半径画圆,再以点C为圆心,CO
为半径画圆,交。。于点。,连接AD、CD;
(2)由(1)易得/4CH=60°,NNOC=90°由直角三角形斜边中线的性质可得CH=AH=BH==4,
证明是等边三角形,可得。。=。"=4)7=2,根据勾股定理求出/。的长度,即可计算△NCD
的面积.
【解答】解:(1)如图,点。即为所求,
VZACB=90°,
ZACH=60°,Z^DC=180°-ZACD-ZCAD=90°
TH为43中点且N4C5=90°,AB=8,
:.CH=AH=BH=^AB=4,
♦;CH=AH,ZACH=60°,
是等边三角形,AC=CH=4,
VZADC=90°,
1
CD=DH=^CH=2,
:.AD=>JAC2-CD2=2遮,
J.^ACD的面积为1£1>40=2次.
【点评】本题考查了尺规作图,勾股定理,等边三角形的判定与性质,直角三角形的性质等知识,综合运
用以上知识是解题的关键.
18.如图,AE//BF,AC平分/BAE,且交3尸于点C.
(1)作尸的平分线交于点D(尺规作图,保留痕迹,不写作法);
(2)根据(1)中作图,连接CD,求证:四边形48CD是菱形.
r
【考点】作图一基本作图;菱形的判定.
【专题】作图题;几何直观;推理能力.
【答案】见试题解答内容
【分析】(1)利用基本作图作NN3F的平分线;
(2)利用角平分线和平行线的性质证明//C3=/A4C,贝!|/2=2C,同理可证NB=4D,所以4D=2C,
于是可判断四边形ABCD是平行四边形,然后利用AB=BC可判断四边形ABCD是菱形.
【解答】(1)解:如图,射线为所求;
(2)证明:'JAE//BF,
:./DAC=/ACB,
平分/84E,
ZDAC=ABAC.
:./4CB=NB4C,
:.AB=BC,
同理可证AB=AD,
:.AD=BC.
又,:AD//BC,
:.四边形ABCD是平行四边形,
又,:AB=BC,
...四边形/BCD是菱形.
【点评】本题考查了作图-基本作图:熟练掌握5种基本作图(作已知角的角平分线).也考查了菱形的
性质.
19.如图,在口488中,是对角线.
(1)利用尺规作线段8。的垂直平分线,垂足为点。,交边/。于点E,交边3c于点尸(要求:尺规作
图并保留作图痕迹,不写作法,标明字母);
(2)试猜想线段39与DE的数量关系,并加以证明.
Ay---------------------
【考点】作图一基本作图;线段垂直平分线的性质;平行四边形的性质.
【专题】多边形与平行四边形;尺规作图;几何直观.
【答案】(1)见解答.
(2)BF=DE,理由见解答.
【分析】(1)根据线段垂直平分线的作图方法作图即可.
(2)根据平行四边形的性质以及全等三角形的判定与性质可得结论.
【解答】解:(1)如图,直线M即为所求.
理由:•.•四边形/BCD为平行四边形,
C.AD//BC,OB=OD,
:.ZOBF=AODE,NBFO=/DEO,
:.丛B0F9丛DOE(AAS),
:.BF=DE.
【点评】本题考查作图一基本作图、平行四边形的性质、全等三角形的判定与性质,解题的关键是理解题
意,灵活运用所学知识解决问题.
20.如图,在平面直角坐标系中,点/(4,0),点B(l,遮),点C在线段上.
(1)读下面的语句,并完成作图(要求:尺规作图,保留作图痕迹)
①过点。作CD〃OB交AB于点D,延长CD并截取CE=OB;
②过点E作EF±CE,交x轴于点F.
(2)求证:4CEF冬AOBA.
【专题】线段、角、相交线与平行线;图形的全等;尺规作图;几何直观.
【答案】(1)①见解答.
②见解答.
(2)见解答.
【分析】(1)①结合平行线的判定,作交4B于点、D,则CD即为所求.以点。为圆心,
的长为半径画弧,交CD的延长线于点E,则CE即为所求.
②根据垂线的作图方法作图即可.
(2)过点2作3G_LCM于点G,则CM=4,OG=1,BG=V3,/G=0/-0G=3.由勾股定理及勾股定
理的逆定理可得/N3O=90°,则由平行线的性质可得/FCE=再结合全等三
角形的判定可得结论.
【解答】(1)解:①如图,作N/CD=N/O3,交43于点。,
贝UCD//OB,
则CD即为所求.
以点C为圆心,。2的长为半径画弧,交CD的延长线于点£,
则CE即为所求.
②如图,斯即为所求.
(2)证明:过点2作2GLCM于点G.
■:A(4,0),B(1,V3),
;Q=4,0G=1,BG=V3,
:.AG=OA-OG=3.
在RtAOBG中,由勾股定理得,OB=VOG2+BG2=Jl2+(V3)2=2,
在RtA^BG中,由勾股定理得,AB=y/AG2+BG2=J32+(V3)2=2b,
:.OA2=OB2+AB2,
:.ZABO=90°.
■:EFLCE,
:.ZFEC=90°,
ZABO=ZFEC,
':CD//OB,
NFCE=NAOB,
":CE=OB,
.♦.△CEF会/\OBA(ASA).
【点评】本题考查作图一复杂作图、勾股定理、勾股定理的逆定理、平行线的判定与性质、全等三角形的
判定,解题的关键是理解题意,灵活运用所学知识解决问题.
考点卡片
1.数轴
(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.
数轴的三要素:原点,单位长度,正方向.
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.G一般取右方
向为正方向,数轴上的点对应任意实数,包括无理数.)
(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.
2.坐标与图形性质
1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到
y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的
符号.
2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问
题的基本方法和规律.
3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.
3.点到直线的距离
(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.
(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出
或求出,而不能说画出,画出的是垂线段这个图形.
4.平行线的判定
(1)定理1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,
两直线平行.
(2)定理2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,
两直线平行.
(3)定理3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角
互补,两直线平行.
(4)定理4:两条直线都和第三条直线平行,那么这两条直线平行.
(5)定理5:在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.
5.平行线的性质
1、平行线性质定理
定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.
定理2:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.
定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.
2、两条平行线之间的距离处处相等.
6.三角形的面积
(1)三角形的面积等于底边长与高线乘积的一半,即底x高.
(2)三角形的中线将三角形分成面积相等的两部分.
7.全等三角形的判定
(I)判定定理I:SSS--三条边分别对应相等的两个三角形全等.
(2)判定定理2:-两边及其夹角分别对应相等的两个三角形全等.
(3)判定定理3:--两角及其夹边分别对应相等的两个三角形全等.
(4)判定定理4:A4S--两角及其中一个角的对边对应相等的两个三角形全等.
(5)判定定理5:血--斜边与直角边对应相等的两个直角三角形全等.
方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应
相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找;一组对边对应相等,且要是两角的夹
边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
8.角平分线的性质
角平分线的性质:角的平分线上的点到角的两边的距离相等.
注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,
有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,:
。在N/02的平分线上,CDLOA,CE_LOB;.CD=CE
9.线段垂直平分线的性质
(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)
垂直平分线,简称“中垂线”.
(2)性质:①垂直平分线垂直且平分其所在线段.—②垂直平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《可口可乐营销策略》课件
- 铁道机车专业教学张琼洁课件
- 双语客运值班员客运站的设备组成课件
- 双语列车长安全管理规定课件
- 铁路市场营销成本导向定价法课件
- 管道支吊架调整施工方案
- 《GB 19147-2016车用柴油》(2025版)深度解析
- 中华传统文化课课件
- 大学生职业规划大赛《种子科学与工程专业》生涯发展展示
- 个人职业能力训练课件
- 中级宏观经济学知到课后答案智慧树章节测试答案2025年春浙江大学
- 智慧树知到《形势与政策(北京大学)》2025春期末答案
- 2025年中国尼龙注塑件市场调查研究报告
- 《智慧能源体系》课程教学大纲
- DBJ04-T 241-2024 公共建筑节能设计标准
- 特殊人群安全用药指导
- 工业物联网安全风险评估-深度研究
- 2024年机场广告行业投资分析及发展战略研究咨询报告
- 《洗地机培训方案》课件
- 手术室护理新进展
- 2025年华侨港澳台学生联招考试英语试卷试题(含答案详解)
评论
0/150
提交评论