




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE1第4讲直线、平面平行的判定与性质1.在空间内,下列命题正确的是()A.平行直线的平行投影重合B.平行于同始终线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行解析:选D.对于A,平行直线的平行投影也可能相互平行,或为两个点,故A错误;对于B,平行于同始终线的两个平面也可能相交,故B错误;对于C,垂直于同一平面的两个平面也可能相交,故C错误;而D为直线和平面垂直的性质定理,正确.2.平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:选D.若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故解除A.若α∩β=l,a⊂α,a∥l,则a∥β,故解除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故解除C.3.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α解析:选C.对于A,若α⊥γ,α⊥β,则γ∥β或γ与β相交;对于B,若m∥n,m⊂α,n⊂β,则α∥β或α与β相交;易知C正确;对于D,若m∥n,m∥α,则n∥α或n在平面α内.故选C.4.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则()A.BD∥平面EFGH,且四边形EFGH是矩形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是菱形D.EH∥平面ADC,且四边形EFGH是平行四边形解析:选B.由AE∶EB=AF∶FD=1∶4知EF綊eq\f(1,5)BD,又EF⊄平面BCD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HG綊eq\f(1,2)BD,所以EF∥HG且EF≠HG.所以四边形EFGH是梯形.5.在三棱锥SABC中,△ABC是边长为6的正三角形,SA=SB=SC=12,平面DEFH分别与AB、BC、SC、SA交于D、E、F、H,且它们分别是AB、BC、SC、SA的中点,那么四边形DEFH的面积为()A.18B.18eq\r(3)C.36D.36eq\r(3)解析:选A.因为D、E、F、H分别是AB、BC、SC、SA的中点,所以DE∥AC,FH∥AC,DH∥SB,EF∥SB,则四边形DEFH是平行四边形,且HD=eq\f(1,2)SB=6,DE=eq\f(1,2)AC=3.如图,取AC的中点O,连接OB、SO,因为SA=SC=12,AB=BC=6,所以AC⊥SO,AC⊥OB,又SO∩OB=O,所以AO⊥平面SOB,所以AO⊥SB,则HD⊥DE,即四边形DEFH是矩形,所以四边形DEFH的面积S=6×3=18,故选A.6.设m,l表示直线,α表示平面,若m⊂α,则“l∥α”是“l∥m”的________条件.(填“充分”“必要”“充要”“既不充分也不必要”)解析:m⊂α,l∥α不能推出l∥m;m⊂α,l∥m也不能推出l∥α,所以是既不充分也不必要条件.答案:既不充分也不必要7.如图,正方体ABCDA1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.解析:因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC,所以F为DC的中点.故EF=eq\f(1,2)AC=eq\r(2).答案:eq\r(2)8.在棱长为2的正方体ABCDA1B1C1D1中,P是A1B1的中点,过点A1作与截面PBC1平行的截面,所得截面的面积是________.解析:如图,取AB,C1D1的中点E,F,连接A1E,A1F,EF,则平面A1EF∥平面BPC1.在△A1EF中,A1F=A1E=eq\r(5),EF=2eq\r(2),S△A1EF=eq\f(1,2)×2eq\r(2)×eq\r((\r(5))2-(\r(2))2)=eq\r(6),从而所得截面面积为2S△A1EF=2eq\r(6).答案:2eq\r(6)9.如图,在正方体ABCDA1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明:(1)如图,连接SB,因为E、G分别是BC、SC的中点,所以EG∥SB.又因为SB⊂平面BDD1B1,EG⊄平面BDD1B1,所以直线EG∥平面BDD1B1.(2)连接SD,因为F、G分别是DC、SC的中点,所以FG∥SD.又因为SD⊂平面BDD1B1,FG⊄平面BDD1B1,所以FG∥平面BDD1B1,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG∥平面BDD1B1.10.(2024·云南省11校跨区调研)如图所示,在四棱锥PABCD中,PA⊥底面ABCD,PA=2,∠ABC=90°,AB=eq\r(3),BC=1,AD=2eq\r(3),∠ACD=60°,E为CD的中点.(1)求证:BC∥平面PAE;(2)求点A到平面PCD的距离.解:(1)证明:因为AB=eq\r(3),BC=1,∠ABC=90°,所以AC=2,∠BCA=60°.在△ACD中,因为AD=2eq\r(3),AC=2,∠ACD=60°,所以AD2=AC2+CD2-2AC·CD·cos∠ACD,所以CD=4,所以AC2+AD2=CD2,所以△ACD是直角三角形,又E为CD中点,所以AE=eq\f(1,2)CD=CE,因为∠ACD=60°,所以△ACE为等边三角形,所以∠CAE=60°=∠BCA,所以BC∥AE,又AE⊂平面PAE,BC⊄平面PAE,所以BC∥平面PAE.(2)设点A到平面PCD的距离为d,依据题意可得,PC=2eq\r(2),PD=CD=4,所以S△PCD=2eq\r(7),因为VPACD=VAPCD,所以eq\f(1,3)·S△ACD·PA=eq\f(1,3)·S△PCD·d,所以eq\f(1,3)×eq\f(1,2)×2×2eq\r(3)×2=eq\f(1,3)×2eq\r(7)d,所以d=eq\f(2\r(21),7),所以点A到平面PCD的距离为eq\f(2\r(21),7).1.如图,透亮塑料制成的长方体容器ABCDA1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③棱A1D1始终与水面所在平面平行;④当容器倾斜如图所示时,BE·BF是定值.其中正确的个数是()A.1 B.2C.3 D.4解析:选C.由题图,明显①是正确的,②是错的;对于③因为A1D1∥BC,BC∥FG,所以A1D1∥FG且A1D1⊄平面EFGH,所以A1D1∥平面EFGH(水面).所以③是正确的;因为水是定量的(定体积V).所以S△BEF·BC=V,即eq\f(1,2)BE·BF·BC=V.所以BE·BF=eq\f(2V,BC)(定值),即④是正确的,故选C.2.(2024·安徽安庆模拟)在正方体ABCDA1B1C1D1中,M、N、Q分别是棱D1C1、A1D1、BC的中点,点P在BD1上且BP=eq\f(2,3)BD1.则以下四个说法:①MN∥平面APC;②C1Q∥平面APC;③A、P、M三点共线;④平面MNQ∥平面APC.其中说法正确的是________.解析:①连接MN,AC,则MN∥AC,连接AM、CN,易得AM、CN交于点P,即MN⊂面APC,所以MN∥面APC是错误的;②由①知M、N在平面APC上,由题易知AN∥C1Q,所以C1Q∥面APC是正确的;③由①知A,P,M三点共线是正确的;④由①知MN⊂面APC,又MN⊂面MNQ,所以面MNQ∥面APC是错误的.答案:②③3.(2024·福建泉州质检)在如图所示的多面体中,DE⊥平面ABCD,AF∥DE,AD∥BC,AB=CD,∠ABC=60°,BC=2AD=4DE=4.(1)在AC上求作点P,使PE∥平面ABF,请写出作法并说明理由;(2)求三棱锥ACDE的高.解:(1)取BC的中点G,连接DG,交AC于点P,连接EG,EP.此时P为所求作的点(如图所示).下面给出证明:因为BC=2AD,G为BC的中点,所以BG=AD.又因为BC∥AD,所以四边形BGDA是平行四边形,故DG∥AB,即DP∥AB.又AB⊂平面ABF,DP⊄平面ABF,所以DP∥平面ABF.因为AF∥DE,AF⊂平面ABF,DE⊄平面ABF,所以DE∥平面ABF.又因为DP⊂平面PDE,DE⊂平面PDE,PD∩DE=D,所以平面PDE∥平面ABF,因为PE⊂平面PDE,所以PE∥平面ABF.(2)在等腰梯形ABCD中,因为∠ABC=60°,BC=2AD=4,所以可求得梯形的高为eq\r(3),从而△ACD的面积为eq\f(1,2)×2×eq\r(3)=eq\r(3).因为DE⊥平面ABCD,所以DE是三棱锥EACD的高.设三棱锥ACDE的高为h.由VACDE=VEACD,可得eq\f(1,3)×S△CDE×h=eq\f(1,3)S△ACD×DE,即eq\f(1,2)×2×1×h=eq\r(3)×1,解得h=eq\r(3).故三棱锥ACDE的高为eq\r(3).4.如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢筋运输途中检验合同
- 2025农产品批发市场的农产品交易合同范本
- 2025租房合同范本大全下载
- 山林转让合同
- 公司股权代持协议范本
- 2025年大连市商品供销合同模板
- 2025标准固定期限雇佣合同
- 合伙门店转让协议书
- 保洁服务用工协议书
- 2025年03月河南省黄河科技学院纳米功能材料研究所公开招聘笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2024年江苏省泰州市姜堰区中考二模化学试题(无答案)
- 村办公楼可行性研究报告
- MOOC 知识创新与学术规范-南京大学 中国大学慕课答案
- MOOC 企业文化与商业伦理-东北大学 中国大学慕课答案
- 高考物理二轮复习课件力学三大观点在电磁感应中的应用
- (2024年)小学体育篮球规则课件
- 吴明珠人物介绍
- 2024年北京京能清洁能源电力股份有限公司招聘笔试参考题库含答案解析
- 穴位贴敷治疗失眠
- 于东来人物故事
- 痛经(中医妇科学)
评论
0/150
提交评论