人教版小学数学六年级比例教案_第1页
人教版小学数学六年级比例教案_第2页
人教版小学数学六年级比例教案_第3页
人教版小学数学六年级比例教案_第4页
人教版小学数学六年级比例教案_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4比例

契教与导航

【教学目标】

1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例

和成反比例的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的正比例关系数

据在有坐标的方格纸上画出图像,会根据其中一个量在图像

中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺,会根据比例尺求

图上距离或实际距离。

5.认识放大与缩小现象,能根据一定的比将简单图形放

大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的教

育。

【重点难点】

重点:理解比例的意义和基本性质。

难点:判断两个比能否组成比例。

【教学指导】

1.重视基本概念教学。

比例、正比例、反比例是本单元学习的几个基本概念,十

分重要。学习比例的相关知识以与比例的应用都有赖于对这

些概念的理解和掌握。如解答含正反比例关系的实际问题,

首先要对两个量成比例做出判断,然后依据正比例和反比例

的数量关系的特点解答。再如,比例尺的应用与图形的放大

与缩小,都要依据比例的意义进行相关的计算C教学中要通

过观察、比较、判断、归纳等方法帮助学生建立明晰的概念,

把握概念的内涵。同时通过应用,不断加深对这些概念的理

解和掌握。

2.提高学生综合运用知识的能力。

本单元的知识综合性比较强,如比例的概念与比,除

法、分数等相关知识解比例以与用比例方法解决问题,都要

用到方程相关知识,所以学习既要注意与旧知识的联系,又

要注意强化学生综合运用知识的能力,教材的编写也注意体

现知识的综合应用,例如比例尺的一些练习,不仅限于计算

图上距离和实际距离,而且涉与到测量图形方向与位置的知

识以与根据实际设计比例尺等。

【课时安排】建议共分13课时:

1.比例的意义和基本性质....................3课时

2.正比例和反比例..........................3课时

3.比例的应用..............................6课时

整理和复习.................................1课时

【知识结构】

1.比例的意义和基本性质

第1课时比例的意义

敦与导航

【教学内容】

比例的意义(教材第40页的内容)。

【教学目标】

1.理解比例的意义,会根据比例的意义组成比例。

2.培养学生的分析概括能力,经历引导学生参与知识的

形成过程,发现过程加运用过程,体验从实践中学习的方法,

感受数学知识与日常生活的密切联系。

3.感受生活中处处有数学,激发学习的兴趣,体会事物

间的相对联系,培养探究精神。

【重点难点】

1.认识比例,理解比例的意义。

2.在已有知识的基础上,结合实例引出新的知识。

【教学准备】

情境图、投影仪、多媒体课件。

【复习导入】

1.教师:请同学们回忆一下上学期我们学过的比的知识,

谁能说一说什么叫做比?举例说明什么叫做比的前项、后

项、比值。

教师把学生举的例子板书出来,并注明各部分的名称。

2.求下面各比的比值。

12:164.5:2.71():6

4S

学生独立求出各比的比值。

(1)教师:在求比值的时候你们发现了什么吗?

学生:有两个比的比值相等。

教师:哪两个比的比值相等呢?

学生回答后,教师把这两个比画上横线。

师:是啊,生活中确实有很多像这样的比值相等的例子,

这种现象早就引起了人们的重视和研窕。人们把比值相等的

两个比用等号连接起来,写成一种新的式子,如:4.5:

2.7=10:6o课件显示:“10:6”和“4.5:2.7”同时闪烁,接

着两个比下面的比值隐去,再用等号连接起来。

(2)前面的两个比能用等号连接起来吗?为什么?

教师将课件后面的两个比隐去。

学生:不能,比值不相等。

教师小结:数学中规定,像这样的一些式子就叫做比例。

教师板书:比例。

【新课讲授】

1.师:今天这节课我们就来一起研究比例,你想研究哪

些内容呢?

生:比的意义,学比例有什么用?比例有什么特点?

师:那好,我们就来研究比例的意义吧,到底什么是比

例呢?根据下面的问题自学例lo

①找出每面红旗长与宽的比。

②求出每个比的比值。

③哪几个比的比值相等?

2.学生自学完以后,教师逐个问题指名学生回答,并板

书在黑板上:2.4:1.6二;60:40=o两面国旗的长和宽的比

值相等。板书:2.4:1.6=60:40,也可以写成。

师:像这样的式子就叫做比例。观察这些式子,你能说

出什么叫做比例吗?

根据学生的回答,教师抓住关键点板书:两个比比值相

教师:同学们说的比例的意义都正确,不过数学中还可

以说得更简洁些。

教师用课件显示:表示两个比相等的式子叫做比例。

学生读一读,明确:有两个比,且比值相等,就能组成

比例:反之,如果是比例,就一定有两个比,且比值相等C

3.找比例。

师:在这四面国旗的尺寸中,你还能找出哪些比可以组

成比例?

过程要求:

学生猜想另外两面国旗长、宽的比值。

求出国旗长、宽的比值,并组成比例。

【课堂作业】

1.完成教材第40页“做一做”第1题。

学生独立完成,再在小组中相互交流、订正。

2.完成教材第40页“做一做”第2题。

组织学生议一议,加深对比例意义的理解。

答案:

1.(1)能组成比例,6:10=9:15。

(2)不能组成比例。

(3)能组成比例,12:13=6:4o

(4)能组成比例,0.6:0.2=34:14o

2.可以组成8个比例。即

3:1.5=4:23:4=1.5:22:1.5=4:32:

4=1.5:3

1.5:3=2:41.5:2=3:44:3=2:1.54:

2=3:1.5

【课堂小结】

通过这节课的学习,你知道“比”和“比例”这两个概

念的联系与区别吗?学生各抒己见,之后师生共同归纳。

【课后作业】

1.教材第43页练习八第1.2题。

2.完成练习册中本课时的练习。

答案:

1.第1题:(从左往右)不能组成比例;能组成比例,30:

2=120:8;不能组成比例;能组成比例,100:5=200:10。

第2题:(1)可以组成比例

4:5=12:154:12=5:1515:5=12:415:

12=5:45:15=4:

125:4=15:1212:15=4:512:4=15:5

(2)不能组成比例;(3)不能组成比例;

(4)能组成比例

:I—II::■I*

23.4624"36

1.11.11.11.1

yy=TT不了=百丁

11111111

_•♦_一_•__・_一_•_

46233624

_1•_1_1_•1_1_1._1__1._

64326342

敦与板书

第1课时比例的意义

2.4:1.6=^-60:40==

92

2.4:1.6=60:40或冬二黑

1.640

像这样表示两人比相等的式子叫做比例

敦与反思

第2课时比例的基本性质

敦与导航

【教学内容】

比例的基本性质(教材第41页内容)。

【教学目标】

1.使学生理解比例的基木性质。

2.提高学生观察、计算、发现、验证和总结的能力。

3.在总结比例的基本性质的过程中,使学生感受到探索

数学问题的乐趣。

【重点难点】

应用比例的基本性质判断两个比能否组成比例,并正确

地组成比例。

【教学准备】

投影仪。

版教学目睚

【复习导入】

L教师提问:什么叫做比例?

2.应用比例的意义,判断哪两个比可以组成比例。

6:3和8:50.2:2.5和4:50

教师:同学们能正确判断两个比能不能组成比例了,则

比例各部分的名称是什么

【新课讲授】

1.教学比例各部分的名称。

引导学生自学教材第41页第1行、第2行的内容。

教师板书:2.4:1.6=60:40

指名让学生指出板书的比例的外项、内项。随着学生的

回答教师接着板书:

学生认一认,说一说比例中的外项和内项。

如J,

,3648

外内内夕卜

项项项项

2.探究比例的基本性质。

教师:我们知道了比例的各部分的名称,则比例有什么

性质呢?现在我们就来探究一下。

教师板书:比例的基本性质。

组织学生观察组成比例的两个内项和两个外项,并探究

它们的关系。

学生小组内交流c指名汇报,学生可能会说:两个外项

的积是2.4X40=96,两个内项的积是1.6X60=96,两个内

项的积等于两个外项的积。

验证其他的比例有没有这个规律,举例说明,检验发

现。如::0.5=1.2:,两个外项的积是X=0.6,两个内项的

积是。5X1.2=0.6。外项的积等于内项的积。

如果把比例改成分数形式呢?如:=,3X15=5X9。等号

两边的分子和分母分别交叉相乘,所得的积相等。

教师:这个规律叫做比例的基本性质。引导学生说一说,

比例的基本性质是什么?组织学生小组交流、汇报。教师补

充:在比例里,两个外项之积等于两个内项之积,这叫做比

例的基本性质。学生齐读两遍。

3.应用比例的基木性质,判断哪两个比可以组成比例。

6:3和8:50.2:2.5和4:50

组织学生在小组中互相交流,然后指名汇报。

4.教师:到现在为止,我们学习了判断两个比能否组成

比例有几种方法?

学生讨论交流后,指名问答.

教师小结:两种方法:看两个比的比值是否相等;两个

比的两个外项之积是否等于两个比的内项之积。

【课堂作业】

教材第41页“做一做”。组织学生独立思考,指名说一

说,全班集体订正。

【课堂小结】

通过这节课的学习,你有哪些收获?

【课后作业】

L教材第43页练习八第5题。

2.完成练习册中本课时的练习。

答案:(1)不可以组成比例;(2)可以组成比例;(3)可

以组成比例;(4)不可以组成比例

鼠教与板书

第2课时比例的基本性质

2.4:1.6=60:40幽

L内项」T^T>一、^而

------外项-----

2.4x40=1.6x602.4x40=L6x60

在比例里,两个外项之积等于两个内项之积。这叫做比例的

基本性质。

敦与反思

第3课时解比例

凝敦与导航

【教学内容】

解比例。(教材第42页例2.例3与练习八的习题)。

【教学目标】

1.使学生学会解比例的方法,进一步理解并掌握比例的

基本性质。

2.培养学生运用已学的知识解决问题的能力,在计算过

程中使学生养成验算的良好习惯。

3.感受数学知识的内在联系,体验应用知识解决问题的

乐趣,培养灵活的思维能力,激发学习数学知识的热情。

【重点难点】

1.使学生掌握解比例的方法,学会解比例。

2.引导学生根据比例的基本性质,将带未知数的比例改

写成方程。

【教学准备】

多媒体课件。

版教学目睚

【情景导入】

上节课我们学习了比例的知识,谁能说一说什么叫做比

例?比例的基本性质是什么?应用比例的基本性质可

以做什么?

学生在小组中议一议,再汇报。

师:这节课,我们还要继续学习有关比例的知识,就是

解比例。

板书课题:解比例。

【新课讲授】

1.教师用多媒体课件出示教材第42页第1.2行的内容。

引导学生思考:什么叫做解比例?

学生独立思考后,在小组中交流并说出:求比例中的未

知项UL做解比例。

师:想一想,怎样才能解出比例中的未知项呢?学生很

容易想到比例的基本性质。

2.教学例2。

教师用多媒体课件出示例2。

指名读题,根据题意,描述两个相等的比。

二110或模型高度:实际高度二1:10。

让学生列出比例,指出这个比例的外项、内项,并说明

知道哪三项,求哪一项

教师板书:X:320=1:10,你能试着计算出来吗?

请一名学生板演,其余的学生在练习本上做。

做完后,师问:怎样把比例式转化为方程式?学生回

答:根据比例的基本性质转化.师接着板书:10x=320Xl0

教师说明:这样解比例就变成解方程了,利用以前学过

的解方程的方法就可以把方程解出来。注意:解方程要写“解”,

则解比例也要写“解”。

师:怎样解这个方程?

生:根据乘法各部分间的关系,把x看做一个因数,根

据一个因数二积+另一个因数,可以求出X。

小结:从刚才的解比例过程中可以看出,解比例可以根

据比例的基本性质把比例转化为方程,然后用解方程的方法

来求未知项X。

3.教学例3。

解比例:

过程要求:学生独立练习,求出未知项。

同学之间互相交流,发现问题,与时解决。请一

位学生上台板演。

解:2.4x=1.5X6

x=

产3.75

提问:还可以用其他的知识解比例吗?

学生交流后,可能会说出:根据比例的意义,等号左边

的比值是,要使等号右边的比值也是,X应等于。

4.总结解比例的方法。

教师:刚才我们学习了解比例,大家回忆一下解比例首

先要做什么?转化成方程后再怎么做?

学生回忆解比例的过程。

教师:从上面的过程可以看出,在解比例的过程中哪一

步是新知识?

学生:根据比例的基本性质把比例转化成方程。

【课堂作业】

1.完成教材第42页“做一做”第1题。

学生独立练习,教师指名板演,集体订正。

2.完成教材第43—44页第6.7、8、9、10、11.12.13题。

答案:l.x=7.5x=x=0.6

2.第6题:判断小红说得是否正确,可以有不同的方

法。方法一:计算1分钟(60秒)心跳的次数,看是不是72

次,因为45秒跳54次,1分钟也是60秒就要跳54+45X

60=72次,由此判断小红说得对。方法二:运用比例的知识。

计算54:45与72:60的比值,看是否相同,相同说明小红

说得对。因为这两个比的比值相同都是1.2,说明心跳速度

没变。

第7题:组织学生独立练习。指名板演,集体订正。

第8题:组织学生在小组中议一议,说一说解题思路,

再动手算一算。学生汇报。

第9题:组织学生阅读题目,理解题意,并独立练习。

第10题:组织学生小组合作完成,指名汇报-

第11题:组织学生在小组中议一议,怎样列比例式,

共同完成后相互交流。

第12题:组织学生根据比例的基本性质改写等式,在小

组中交流订正。

第13题:组织学生在小组中讨论,交流,相互验证。此

题答案不唯一。

【课堂小结】

通过这节课的学习,你在哪些方面得到了提高?

【课后作业】

完成练习册中本课时的练习。

第3课时解比例

例2:解:设这座模型的高度是,v米)

豕320=1:10

10x=32()xI

x=-32-(-)--x--1

1()

x=32

答:这座模型高32m

例3:解比例:舁二9

2.5x

解:1.5%=2.5x6

2.5x6

x=1.5

x=10

敦与反思

2.正比例和反比例

第1课时正比例

教学导航

【教学内容】

正比例。

【教学目标】

使学生理解正比例的意义,会正确判断成正比例的量。

【重点难点】

重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。

【教学准备】

投影仪。

【复习导入】

1.复习引入。

用投影仪逐一出示下面的题目,让学生回答。

①已知路程和时间,怎样求速度?

板书:二速度。

②已知总价和数量,怎样求单价?

板书:二单价。

③已知工作总量和工作时间,怎样求工作效率?

板书:工工作效率。

2.引入课题:这是我们过去学过的一些常见的数量关系。

这节课我们进一步来研究这些数量关系的一些特征,首先来

研究这些数量之间的正比例关系。板书课题:成正比例的量。

【新课讲授】

1.教学例1。

教师用投影仪出示例1的图和表格。

数量/支12345678•••

总价/元().51.()1.52.02.53.()3.54.0•••

学生观察上表并讨论问题。

(1)铅笔的总价和数量有关系吗?

(2)铅笔的总价是怎样随着数量的变化而变化的?

(3)铅笔的总价和数量的变化有什么规律?组织学生

在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:

①铅笔的总价随着数量变化,它们是两种相关联的量。

②数量增加,总价也增加;数量降低,总价也减少。

③铅笔的总价和数量的比值总是一定的,即单价一定。

教师指出:总价和数量有这样的变化关系,我们就说总

价和数量成正比例关系,总价和数量叫做成正比例的量C

2.教师出示:一列火车行驶的时间和路程如下表。

时间/时134567•••

路程/km90180270360450S406S0

引导学生观察、思考:路程和时间有关系吗路程怎样随

着时瓦的变化而变化?路程和时间的变化有什么规律?

组织学生分析、讨论、汇报:路程和时间是两种相关联

的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着

缩小;但是路程和时间的比值一定,写成关系式是二速度(一

定)。

教师小结:所以说路程和时间成正比例关系,路程和时

间叫做成正比例的量。

3.归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规

律?

②教师引导学生归纳总结:都是两种相关联的量,一种

量变化,另一种量也随着变化;如果这两种量中相对应的两

个数的比值也就是商一定,这两种量就叫做成正比例的量,

它们的关系就叫做成正比例关系。

学生说一说是怎么理解正比例关系的。

要求学生把握三个要素•:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加:一个量减少,

另一个量也减少。

第三:两个量的比值一定。

4.用字母表示正比例的关系。

教师:如果用字母x和y表示两种相关联的量,用k表

示它们的比值(一定),比例关系可以用这样的式子表示:

(一定)

5.教师:想一想,生活中还有哪些成正比例的量?

学生举例说明并说出理由如:长方形的宽一定,面积和

K成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比

例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例;

【课堂作业】

完成教材第46页的“做一做”(1)〜(3)。

答案:

(1)O

(2)比值表示每小时行驶多少km。

(3)成正比例。理由:路程随着时间的变化而变化。

①时间增加,路程也增加,时间减少,路程也随着减

少;②路程和时间的比值(速度)一定。

【课堂小结】

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

■敦与板书

第1课时正比例

二速度(一定)

二单价(一定)

二工作效率(一定)

(一定)

成正比例的量的三要素:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另

一个量也减少。

第三:两个量的比值一定。

嘉教与反思

第2课时正比例图象

泰敦与导航

【教学内容】

正比例图象。

【教学目标】

1.使学生了解表示成正比例的量的图象特征,并能根据

图象解决相关简单问题。

2.通过练习,巩固对正比例意义的认识。

3.初步渗透函数思想。

【重点难点】

能根据数量关系式或图象判断两种量是否成正比例。

【教学准备】

投影仪。

【新课讲授】

教学第46页内容。

教师出示表格(见书),依据表中的数据描点。(见书)

师:从图中你发现了什么?

生:这些点都在同一条直线上。

看图回答问题:

①如果铅笔的数量是7支,则铅笔的总价是多少?②总

价是4.0的铅笔,数量是多少?③铅笔的数量是3支,则铅

笔的总价是多少?描出这一对应的点,它们是否在同一直线

上?

你还能提出什么问题?有什么体会?

组织学生分小组汇报,学生汇报时可能会说出:

①正比例关系的图象是一条经过原点的直线。

②利用正比例图象不用计算,可以由一个量的值,直接

找到对应的另一个量的值。

【练习讲授】

1.基本练习。

(1)投影出示教材第49页第1题。

教师引导学生回顾正比例的意义与判断是否成正比例的

方法。学生独立完成练习。

教师要求学生从两个方面说明为什么成正比例。a.电是

随着用电量的增加而增加;b.电费与用电量的比值总是相等

的。

师生共同订正。

(2)投影出示:一列火车1小时行驶90km,2小时行驶

180km,3小时行驶270km,4小时行驶360km,5小时行驶

450km,6小时行驶540km,7小时行驶630km,8小时行驶

720km...

①出示下表,填表。

一列火车行驶的时间和路程

③教师点拨:随着时间的变化,路程也在变化,我们就

说时间和路程是两种相关联的量。(板书:两种相关联的量)

④教师:根据计算你们发现了什么?指出:相对应的

两个数的比值固定不变,在数学上叫做一定。

⑤用式子表不它们的关系:二速度(一定)。

教师:上节课,我们学习了成正比例的量,下面我们继

续学习和练习。

2.指导练习。

(1)完成教材第49页第2题。

(2)完成教材第49页第3题,先由学生独立做,后由

老师抽查。在抽查第(1)小题时,多让不同的学生回答。做

第(2)小题时应多让学生们交流。第(3)小题汇报时要求

说出,你是怎样估计的,上台在投影仪上展示估计的思维过

程。

(3)解决教材49页第4题:①投影出示书中的表格,引

导学生观察表中的数据。

②组织学生在小组中合作探究。a.动手画一画,指名汇

报图象特点。b.组织学生说一说,相互交流。

提不:判断两种量是否成止比例,先要判断它们是不是

相关联的量,再判断它们的比值是否一定。

【课堂作业】

1.根据X和y成正比例关系,填写表中的空格。

(1)在这一过程中,哪个量没变?

(2)路程和时间有什么关系?

(3)不计算,从图中看出4小时行驶多少千米?

(4)7小时行驶多少千米?

【课堂小结】

教师:判断两个相关联的量成正比例的三个要素是什

么?

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

会教与版书

第2课时正比例图象

(特点:表格T描点T形成直线

正比例图象

[作用:求值一找点一直线

艇敢与反思

第3课时反比例

敦与导航

【教学内容】

反比例。(教材第47页例2)。

【教学目标】

1.使学生理解反比例的意义,能正确地判断两种相关联

的量是不是成反比例的量。

2.让学生经历反比例意义的探究过程,体验观察比较、

推理、归纳的学习方法。

【重点难点】

引导学生总结出成反比例的量的特点,进而抽象概括出

反比例的关系式。利用反比例的意义,正确判断两个量是否

成反比例。

【教学准备】

投影仪。

毂敦与运睚

【复习导入】

1.让学生说说什么是正比例,然后用投影出示下面的

题。

下面各题中哪两种量成正比例?为什么?

(1)每公顷产量一定,总产量和公顷数。

(2)一袋大米的重量一定,吃了的和剩下的。

(3)修房屋时,粉刷的面积和所需涂料的数量。

2.说出每小时加工零件数、加工零件总数和加工时间三

者之叵的关系。在什么条件下,其中两种量成正比例?

教师:如果加工零件总数一定,每小时加工数和加工时

间会成什么变化?关系怎样?这就是我们这节课要学习的内

容。

【新课讲授】

1.教学例2。

创设情境。

教师:把相同体积的水倒入底面积不同的杯子,高度会

怎样变化?

出示教材第47页例2的情境图和表格。

请学生认真观察表中数据的变化情况,组织学生分小组

讨论:

(1)水的高度和底面积变化有关系吗?

(2)水的高度是怎样随着底面积变化的

(3)水的高度和底面积的变化有什么规律?

学生不难发现:底面积越大,水的高度越低;底面积越

小,水的高度越高,而且高度和底面积的乘积(水的体积)

一定。

教师板书配合说明这一规律:

30X10=20X15=15X20=...=300

教师根据学生的汇报说明:高度和底面积有这样的变化

关系,我们就说高度云口底面积成反比例的关系,高度和底面

积叫做成反比例的量。

2.归纳反比例的意义。

组织学生小组内讨论:反比例的意义是什么

学生小组内交流,指名汇报。

教师总结:像这样,两种相关联的量,一种量变化,另

一•种量也随着变化,如果这两种量中相对应的两个数的积一

定,这两种量就叫做成反比例的量,它们的关系叫做反比例

关系。

3.用字母表示。

如果用字母x和y表示两种相关联的量,用k表示它们

的乘积(一定),反比例关系的式子怎么表示?

学生探讨后得力结果。

xXy=k(一定)

4.师:生活中还有哪些成反比例的量?

在教师的引导下,学生举例说明。如:

(1)大米的质量一定,每袋质量和袋数成反比例。

(2)教室地板面积一定,每块地砖的面积和块数成反比

例。

(3)长方形的面积一定,长和宽成反比例。

5.组织学生将例1与例2进行比较,小组内讨论:

正比例与反比例的相同点和不同点有哪些?

学生交流、汇报后,引导学生归纳:

相同点:都表示两种相关联的量,且一种量变化,另一

种量也随着变化。

不同点:正比例关系中比值一定,反比例关系中乘积一

定。

6•你还有什么疑问

?如果学生提出表示反比例关系的图像有什么特征,

教师应该引导学生观察教材第48页“你知道吗?”中的图

像。

反比例关系也可以用图像来表示,表示两个量的点不在

同一条直线上,点所连接起来的图像是一条曲线,图像特征

不要求掌握。

【课堂作业】

L教材第48页的“做一做”。

2.教材第51页第9、10题。

答案:1.(1)每天运的吨数和所需的天数两种量,它们

是相关联的量。

(2)300X1=150X2=100X3=300(答案不唯一),积都

是300。积表示货物的总量。

(3)成反比例,因为每天运的吨数变化,需要的天数也

随着变化,且它们的积一定。

2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一

定。

第10题:5010012

【课堂小结】

说一说成反比例关系的量的变化特征c

【课后作业】

1.完成练习册中本课时的练习。

2.教材51〜52页第8、14题。

答案:

2.第8题:成反比例,因为教室的面积一定,而每块地

砖的面积与所需数量的乘积都等于教室的面积54m2o

第14题:(1)斑马和长颈鹿的奔跑路程和奔跑时间成

正比例。

(2)分析:可以通过图像直接估计,先在横轴上找到

18分的位置,然后在两个图像中找到相应的点,再分别在竖

轴上找到与这个点对应的数值;也可以通过计算找到。

解答:从图像中可以知道斑马lOmin跑12km,则Imin

跑1.2km,18min861.2X18=21.6(km)。

从图像中可以知道长颈鹿5min跑4km,Imin跑0.8km,

18minEfi0.8X18=14.4(km)。

(3)斑马跑得快。

篷教与板书

第3课时反比例

两种相关联的量,一种量变化,另一种量也随着变化,

如果这两种量中相对应的两个数的积一定,这两种量就叫做

成反比例的量,它们的关系叫做反比例关系。

用x和y表示两种相关联的量,x和y成反比例关系用

字母表示为:xXy=k(一定)

正比例与反比例的相同点和不同点:

相同点:都表示两种相关联的量,且一种量变化,另一•种量

也随着变化。

不同点,:正比例关系中比值一定,反比例关系中乘积一定。

凝教与反思

3.比例的应用

第1课时比例尺(1)

泰教学导航

【教学内容】

比例尺(1)(教材第53页内容)。

【教学目标】

1.从学生的生活实际出发认识比例尺,理解比例尺的含

义,使学生会求一幅图的比例尺。

2.让学生经历比例尺的探究过程,体验从实践中学习的

方法,感受数学知识与日常生活的密切联系,培养学生的探

究意识和创新意识。

【重点难点】

理解比例尺的含义C

【教学准备】

投影仪,比例尺不同的地图,机器零件纸,北京的平面图。

茨敦与目睚

【情景导入】

教师:前面我们学习了比例的知识,比例的知识在实

际生活中有什么用途呢?请同学们看一看我们的教室有多

大,它的长和宽大约多少米?如果我们要绘制教室的平面

图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?

如果要画中国地图呢于是人们就想出了•个聪明的办法:在

绘制地图和其它平面图的时候,把实际距离按一定的比例缩

小,再画在纸上,有时也把一些尺寸小的物体(如机器零件)

的实际距离扩大一定的倍数,再画在纸上。不管哪种情况,

都需要确定图上距离天口实际距离的比。这就是比例的知识在

实际生活中的一种应用。今天,我们就来学习这方面的知识。

【新课讲授】

1.比例尺的意义。

(1)教师讲解:因为在绘制地图和其它平面图时,经常

要用到图上距离与实际距离的比,我们就把它起个名字,叫

做比例尺。(板书:图上距离:实际距离二比例尺)有时图上

距离与实际距离的比也可以写成分数形式。(板书:二比例

尺)

图上距离是比的前项,实际距离是比的后项C为了计算

简便,通常把比例尺写成前项或后项是1的最简整数比。

(2)教师出示地图,引导学生观察1:10o

(3)组织学生议一议:比例尺中的“1”表示什么

“100000000”表示什么?指名说一说:“1”表示图上距离,

“100000000”表示实际距离,也就是说图上1cm的距离表示

实际距离lOOOOOOOOcnio

教师说明:1:100000000是数值比例尺,有时写成。

(4)引导学生观察比例尺/。适时讲解:这是线段比例

尺,表示线段的长度1cm是图上距离,50km是实际距离,也

就是说图上距离1cm代表着实际距离是50km。

(5)教师用投影出示图纸。引导学生观察图中的比例尺

2:1表不什么

指名汇报:2:1表示图上距离是实际距离的2倍。

教师小结:在生产中,有时由于机器零件比较小,需要

把实际距离扩大一定的倍数以后,再画在纸上。这时比例尺

的前项比后项大。为了计算方便,通常把比例尺写成前项或

后项是1的比。

2.教学例lo

(1)教师出示教材第53页例1。

组织学生独立思考,再在小组中议一议:什么是比例

尺?

教师指名汇报,板书:

图上距离:实际距离

=2.4cmI120km

=2.4cm*12000000cm

=1:

(2)巩固应用。教师出示教材第53页“做一做”。组

织学生独立完成,在小组中检查。

答案:教材53页“做一做":2cm:5mm=20mm:5mm=4:

1

【课堂作业】

教材第56页练习十第1题。

答案:

第1题:把数值比例尺改为线段比例尺,在图上距离与

实际距离的比中,要把实际距离的单位改写成所要求的单位,

即30000000cm=300kn]、所以应填300。

【课堂小结】

通过这节课的学习,你有什么收获?有什么感受?

【课后作.业】

完成练习册中本课时的练习。

教学贩书

第1课时比例尺(1)

图上距离:实际距离二比例尺

二比例尺

1:100000000是数值比例尺

图上距离:实际距离

=lcm:50km

=lcm:5000000cm

=1:

教学反思

第2课时比例尺(2)

教学导航

【教学内容】

比例尺⑵(教材第54页内容)。

【教学目标】

根据比例尺求图上距离或实际距离。

【重点难点】

1.根据比例尺求图上距离和实际距离。

2.设未知数时应统一长度单位。

【教学准备】

多媒体课件。

毂敦与运睚

【情景导入】

前面我们学习了比例尺的求法,有同学能简单说一说

吗?

指名学生回答问题,教师板书:

图上距离:实际距离二比例尺

【新课讲授】

教学例2。

出示教材第54页例2o

指名读题,并说出题目已知什么,要求什么?

学生:己知比例尺和地铁1号线的图上距离,求它的实

际距离大约是多少。

教师启发:因为图上距离:实际距离二比例尺,要求实际

距离可以用解比例的方法来求。

学生思考并解答一下问题:

(1)这道题的图上距离是多少(板书:7.8cm)

(2)实际距离不知道怎么办?(用x表示,在7.8的

下面板书x,并在它们中间画上分数线)

(3)因为图上距离和实际距离的单位要统一,所设的x

应用什么单位?(应用厘米)

(4)比例尺是多少?写成什么形式?(分数形式)教

师板书解答过程。

解:设苹果园站到四惠东站的实际距离为x厘米。

指定一名学生板演x的值,其他学生在练习本上做。教

师强调单位互化的时候,注意0的个数不能写掉了。

师问:这道题还有其他的方法吗?学生思考后回答。

(可以用算术方法:7.8+)

(5)巩固应用:做教材第54页“做一做”。先让学生

说出图中的比例尺是多少,表示什么意思,再用直尺量出图

中河西村与汽车站的距离,然后计算出实际距离。集体订正

时,要注意检查学生是否把实际距离化成了米。学有余力的

学生要求他们用两种方法。

答案:

教材54页“做一做”:图上距离:实际距离=lcm:

600m=l:60000,量得图中河西村与汽车站的距离是2cm。

解:设河西村与汽车站两地的实际距离大约是xcmo

2:产1:60000

A-120000

120000cm=1200m(求两地的实际距离也可以根据线段比

例尺,直接用600X2=1200(m)

【课堂作业】

教材第57页第5题。

组织学生独立完成,指名回答。

答案:

设上海到杭州的实际距离是x厘米。

产17000000

17000000=17km

答:上海到杭州的实际距离是17km。

【课堂小结】

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

教学板书

第2课时比例尺(2)

图上距离:实际距离二比例尺

未知数一统一单位

敦与反思

第3课时比例尺(3)

敦与导航

【教学内容】

比例尺(3)(教材第56〜58页第3〜10题)。

【教学目标】

1.通过练习,巩固对比例尺的认识。

2.培养学生联系实际解决问题的能力。

工使学生感受到数学在生活中的广泛应用c

【重点难点】

把比例尺应用到实际生活中,解决实际问题。

【教学准备】

投影仪。

魁蚱回呈

【复习导入】

1.什么是比例尺?比例尺1:1000表示什么?

2.说说实际距离、图上距离和比例尺之间的关系。

【新课讲授】

L教授例3。

(1)教师用投影出示教材55页的例3。

(2)组织学生讨论:画出三家和学校的平面图要做好哪

些准备工作?使学生明确:根据“图上距离=实际距离X

比例尺”,求出长和宽的图上距离。

(3)学生分组求出各图上距离,教师订正。(4)组织

学生画出平面图,并在全班交流。

2.巩固应用:完成教材第55页“做一做”。组织学生独

立完成,同桌间相互检查。

【练习讲授】

1.出示习题:小明家要搬新家了,他特别高兴。可是,

他很担心新家离学校太远。小明的爸爸按比例为他画了一幅

图,并且告诉他旧家与学校之间的距离是900门c小明量得新

家到学校的图上距离是7cm,旧家到学校的距离是3cnio同学

们,你们能帮助小明算算新家与学校之间的距离吗?

(1)学生根据手中的图纸,分小组研究用什么知识来解

答,然后合作计算出结果。

(2)学生汇报所在小组是怎样想的与利月了什么知识。

教师要求学生每说出一步算式要说出理由,并说一说为什么

要这样求。

方法一:运用比例尺。

900m=90000cm3:90000=1:30000

7X30000=210000(cm)=2100(m)

方法二:运用倍比关系。

77

74-3=-900X-=2100(m)

33

2.教师:通过同学们的计算,我们知道了小明的新家距

学校比旧家远了不少,但小明还是非常高兴的,因为小明的

新家比旧家宽敞。小明的新家按1:200画出的户型图是这样

的。

教师:你能根据手中的图选其中的一间求出实际面积

吗?

(1)学生以小组为单位分工计算出结果。

(2)汇报求出卧室和卫生间的实际面积的方法。

(3)引导学生通过这道题发现在比例尺的应用中应该注

意哪些问题。

3.教材第56页练习十第4题。

教师:这是一幅七星瓢虫的放大图,则它的比例尺的后

项应该是多少?

组织学生独立完成,指名汇报。

答案:量得七星瓢虫的长度是2.5cm,2.5cm:

5nlm=25nlm:5mm=5:1o

4.教材第57页练习十第8题。

先组织学生独立练习,并在小组中交流。

答案:3.6cm22.5cm9000km

5.教材第57页练习十第7题。

(1)教师用投影出示第7题。

(2)指名读题,理解题意。

(3)小组合作讨论,指一名学生板演,然后集体订正。

解:设兰州到乌鲁木齐在地图上的长是x厘米。

1900km=190000000cm

x:190000000=1:

产4.75

答:地图上两地之间的长度是4.75cm。

6.教材第57页练习十第6题。

(1)组织学生分小组活动:在自己准备的地图上,选取

两个城市。

(2)组织学生量出两个城市在图上的距离。

(3)根据比例尺,算出两个城市的实际距离。

(4)小组交流,汇报。

7.教材第57页练习十第9题。

(1)组织学生读题,理解题意。

(2)组织学生在小组中合作完成。

①根据比例尺,算出篮球场长和宽的实际距离。

②画出平面图。

③相互展示。

8.教材第58页练习十第10题。

(1)学生拿出自己测量房屋地面的长和宽的实际距离。

(2)组织学生在小组中议一议,使学生明确,先要确定

比例尺,再计算出长知宽的图上距离,然后再画。(比例尺

要根捱平面的大小来定)

9.教材第58页练习十第11题。

(1)组织学生读题,理解题意。

(2)组织学生在小组中议一议,确定解题步骤。

(3)小组合作完成,并相互交流,这里用图上距离1cm

表示实际距离200m比较合适。

(4)用投影展示学生的作.业。

【课堂小结】

通过这节课的学习,你又有哪些新的认识?比例尺能

帮助我们解决生活中的哪些问题?

组织学生说一说,相互交流。

【课后作业】

完成练习册中本课时的练习。

良教学版书

第3课时比例尺(3)

例题:

方法一:运用比例尺。

900m=90000cm

3:90000=1:30000

7X30000=210000cm=2100(m)

方法二:运用倍比关系。

74-3=-900x1=2100(m)

33

及15与反思

第4课时图形的放大与缩小

凝敦与导航

【教学内容】

图形的放大与缩小(教材第60页例4与60页“做一做”)。

【教学目标】

1.使学生从数学的角度认识放大与缩小现象,体会图形

相似变化的特点,能按要求将图形放大或缩小。

2.培养学生把己学知识应用到实际生活中的能力,以与

动手的能力。

【重点难点】

1.理解图形的放大和缩小,能利用方格纸把一个简单图

形按指定的比例放大或缩小。

2.使学生在观察、比较、思考和交流等活动中,感受图

形放大、缩小是图形边长的变化,图形的形状不发生改变。

【教学准备】

投影仪、投影片、方格纸。

【情景导入】

1.创设情境,引起冲突。

出示一张班级学生照片。

师:李林同学打算把自己的照片放大后挂在房间里,摄

影师分别用了三种处理方法。

电脑演示:方法一,宽边不变,把长边拉长。

方法二,长边不变,把宽边拉长。

方法三,把长边、宽边同步拉长。

2.合理选择,初步感知。

请你帮助李林选择一下,哪种处理方法效果最佳?并说

出理由。

【新课讲授】

1.(1)(隐去方法一、方法二图,留下方法三图和原图)

师:仔细观察两幅图,总感觉两者之间似乎存在着一种关系,

那我们可以着手从哪方面研究两者关系呢?

(师拿出一张长方形纸)我们先来分析一下长方形有哪

些元素?最基本的因素是什么?

引领学生答出长方形的基本因素有长、宽、周长、面积,

其中最基本的因素是长和宽。

师:那我们就从最基本的因素长和宽开始研窕吧。

电脑出示:原照片长8cm,宽5cm。

放大后,照片长16cm,宽10cmo

放大后的长和原来的长有什么关系?宽呢?

(2)根据学生回答,教师引导出示:放大后长方形的长

是原来长方形长的2倍,放大后的宽也是原来长方形宽的2

倍,概括起来说就是:长方形的每条边都放大到原来的2

倍。放大后的长方形与原来长方形对应边长的比是2:1。就

是把原来的长方形按2:1放大。(划线部分为所出示的三句

结论)

(3)借助两幅图理解“每条边”,“对应边长”

和“2:1”的含义,重点明白这里比的前项和后项分别代表

什么?

出示:2:1

前项后项

放大后边长原图边长

(4)如果把原图按3:1放大,放大后长方形的长、宽

各是多少?

学生问答,师同步板书:

原图2:13:1

长(cm):88X2=168X3=24

宽(cm):55X2=105X3=15

继续追问,如果把原图按5:1,10:1放大,放大后的

长、宽各是多少?指名口答。

①如果把原图按1:2缩小,缩小后的长、宽是原长、宽

的几分之几?各是多少厘米?

②先理解1:2的含义:放大后的边长为1份,原图边长

为2份。

原图1:2I:4

长(cm):88+2=48+4=2

宽(cni):554-2=2.554-4=1.25

如果按1:4缩小呢?

小结提问:图形在放大与缩小时什么发生了变化?

过渡:从李林同学的照片中我们学习了图形的放大与缩

小,下面我们动手来画,或许还会有新的发现。

2.独立完成教材第60页例4的绘图。

(1)默读例4并思考:书中画出几个图形?所画图

形的格数与原图有什么关系?

(2)请同学们按要求画在自己的方格图中,比一比谁画

的既正确又美观。

(3)投影反馈,请同学相互评价,重点说出所画图形格

数是怎样得来的。

(4)观察上面的3个图形,你有什么发现。

工例4的延伸.如果把放大后的这组图形的各边再按1:

3缩小,图形又会发生什么变化?学生讨论后得出:

(1)图形缩小了,但形状不变。

(2)缩小后的图形各条边分别缩小到原来长度的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论