2025年浙江省杭州市西湖高中高三调研考试(数学试题)试卷含解析_第1页
2025年浙江省杭州市西湖高中高三调研考试(数学试题)试卷含解析_第2页
2025年浙江省杭州市西湖高中高三调研考试(数学试题)试卷含解析_第3页
2025年浙江省杭州市西湖高中高三调研考试(数学试题)试卷含解析_第4页
2025年浙江省杭州市西湖高中高三调研考试(数学试题)试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年浙江省杭州市西湖高中高三调研考试(数学试题)试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足(是虚数单位),则=()A. B. C. D.2.设为的两个零点,且的最小值为1,则()A. B. C. D.3.数列的通项公式为.则“”是“为递增数列”的()条件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要4.已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为()A. B. C. D.5.若直线经过抛物线的焦点,则()A. B. C.2 D.6.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是()A. B. C. D.17.展开式中x2的系数为()A.-1280 B.4864 C.-4864 D.12808.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是()A. B. C. D.9.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为()A. B. C. D.10.已知角的终边经过点,则A. B.C. D.11.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为()A. B. C. D.12.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在长方体中,,E,F,G分别为的中点,点P在平面ABCD内,若直线平面EFG,则线段长度的最小值是________________.14.在三棱锥中,,,两两垂直且,点为的外接球上任意一点,则的最大值为______.15.已知等比数列的各项都是正数,且成等差数列,则=__________.16.根据如图所示的伪代码,输出的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥的底面中,,,平面,是的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由.18.(12分)已知数列和满足:.(1)求证:数列为等比数列;(2)求数列的前项和.19.(12分)已知函数(1)求单调区间和极值;(2)若存在实数,使得,求证:20.(12分)已知函数(1)求函数的单调递增区间(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由21.(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.①求10件手工艺品中不能外销的手工艺品最有可能是多少件;②记1件手工艺品的利润为X元,求X的分布列与期望.22.(10分)设的内角、、的对边长分别为、、.设为的面积,满足.(1)求;(2)若,求的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由,得,.故选.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.2.A【解析】

先化简已知得,再根据题意得出f(x)的最小值正周期T为1×2,再求出ω的值.【详解】由题得,设x1,x2为f(x)=2sin(ωx﹣)(ω>0)的两个零点,且的最小值为1,∴=1,解得T=2;∴=2,解得ω=π.故选A.本题考查了三角恒等变换和三角函数的图象与性质的应用问题,是基础题.3.A【解析】

根据递增数列的特点可知,解得,由此得到若是递增数列,则,根据推出关系可确定结果.【详解】若“是递增数列”,则,即,化简得:,又,,,则是递增数列,是递增数列,“”是“为递增数列”的必要不充分条件.故选:.本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.4.B【解析】

利用复数的除法运算化简z,复数在复平面中对应的点到原点的距离为利用模长公式即得解.【详解】由题意知复数在复平面中对应的点到原点的距离为故选:B本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.5.B【解析】

计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.本题考查了抛物线的焦点,属于简单题.6.B【解析】

先根据导数的几何意义写出在两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数,结合导数求出最小值,即可选出正确答案.【详解】解:当时,,则;当时,则.设为函数图像上的两点,当或时,,不符合题意,故.则在处的切线方程为;在处的切线方程为.由两切线重合可知,整理得.不妨设则,由可得则当时,的最大值为.则在上单调递减,则.故选:B.本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出和的函数关系式.本题的易错点是计算.7.A【解析】

根据二项式展开式的公式得到具体为:化简求值即可.【详解】根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为:化简得到-1280x2故得到答案为:A.求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.8.C【解析】

根据循环结构的程序框图,带入依次计算可得输出为25时的值,进而得判断框内容.【详解】根据循环程序框图可知,则,,,,,此时输出,因而不符合条件框的内容,但符合条件框内容,结合选项可知C为正确选项,故选:C.本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.9.A【解析】由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.10.D【解析】因为角的终边经过点,所以,则,即.故选D.11.B【解析】

由圆过原点,知中有一点与原点重合,作出图形,由,,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积.【详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,由于,,∴,∴,,∴点坐标为,代入抛物线方程得,,∴,.故选:B.本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.12.A【解析】

根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

如图,连接,证明平面平面EFG.因为直线平面EFG,所以点P在直线AC上.当时.线段的长度最小,再求此时的得解.【详解】如图,连接,因为E,F,G分别为AB,BC,的中点,所以,平面,则平面.因为,所以同理得平面,又.所以平面平面EFG.因为直线平面EFG,所以点P在直线AC上.在中,,故当时.线段的长度最小,最小值为.故答案为:本题主要考查空间位置关系的证明,考查立体几何中的轨迹问题,意在考查学生对这些知识的理解掌握水平.14.【解析】

先根据三棱锥的几何性质,求出外接球的半径,结合向量的运算,将问题转化为求球体表面一点到外心距离最大的问题,即可求得结果.【详解】因为两两垂直且,故三棱锥的外接球就是对应棱长为2的正方体的外接球.且外接球的球心为正方体的体对角线的中点,如下图所示:容易知外接球半径为.设线段的中点为,故可得,故当取得最大值时,取得最大值.而当在同一个大圆上,且,点与线段在球心的异侧时,取得最大值,如图所示:此时,故答案为:.本题考查球体的几何性质,几何体的外接球问题,涉及向量的线性运算以及数量积运算,属综合性困难题.15.【解析】

根据等差中项性质,结合等比数列通项公式即可求得公比;代入表达式,结合对数式的化简即可求解.【详解】等比数列的各项都是正数,且成等差数列,则,由等比数列通项公式可知,所以,解得或(舍),所以由对数式运算性质可得,故答案为:.本题考查了等差数列通项公式的简单应用,等比数列通项公式的用法,对数式的化简运算,属于中档题.16.7【解析】

表示初值S=1,i=1,分三次循环计算得S=10>0,输出i=7.【详解】S=1,i=1第一次循环:S=1+1=2,i=1+2=3;第二次循环:S=2+3=5,i=3+2=5;第三次循环:S=5+5=10,i=5+2=7;S=10>9,循环结束,输出:i=7.故答案为:7本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)详见解析;(Ⅱ);(Ⅲ)存在,点为线段的中点.【解析】

(Ⅰ)连结,,,则四边形为平行四边形,得到证明.(Ⅱ)建立如图所示坐标系,平面法向量为,平面的法向量,计算夹角得到答案.(Ⅲ)设,计算,,根据垂直关系得到答案.【详解】(Ⅰ)连结,,,则四边形为平行四边形.平面.(Ⅱ)平面,四边形为正方形.所以,,两两垂直,建立如图所示坐标系,则,,,,设平面法向量为,则,连结,可得,又所以,平面,平面的法向量,设二面角的平面角为,则.(Ⅲ)线段上存在点使得,设,,,,所以点为线段的中点.本题考查了线面平行,二面角,根据垂直关系确定位置,意在考查学生的计算能力和空间想象能力.18.(1)见解析(2)【解析】

(1)根据题目所给递推关系式得到,由此证得数列为等比数列.(2)由(1)求得数列的通项公式,判断出,由此利用裂项求和法求得数列的前项和.【详解】(1)所以数列是以3为首项,以3为公比的等比数列.(2)由(1)知,∴为常数列,且,∴,∴∴本小题主要考查根据递推关系式证明等比数列,考查裂项求和法,属于中档题.19.(1)时,函数单调递增,,函数单调递减,;(2)见解析【解析】

(1)求出函数的定义域与导函数,利用导数求函数的单调区间,即可得到函数的极值;(2)易得且,要证明,即证,即证,即对恒成立,构造函数,,利用导数研究函数的单调性与最值,即可得证;【详解】解:(1)因为定义域为,所以,时,,即在和上单调递增,当时,,即函数在单调递减,所以在处取得极小值,在处取得极大值;,;(2)易得,要证明,即证,即证即证对恒成立,令,,则令,解得,即在上单调递增;令,解得,即在上单调递减;则在取得极小值,也就是最小值,从而结论得证.本题考查利用导数研究函数的单调性与极值,利用导数证明不等式,考查运算求解能力,考查函数与方程思想,属于中档题.20.(1)见解析(2)不存在,见解析【解析】

(1)求出函数的导数,通过讨论的范围求出函数的单调区间即可;(2)求出函数的导数,结合导数的几何意义,再令,转化为方程有解问题,即可说明.【详解】(1)函数的定义域为,所以当时,;,所以函数在上单调递增当时,①当时,函数在上递增②,显然无增区间;③当时,,函数在上递增,综上当函数在上单调递增.当时函数在上单调递增;当时函数无单调递增区间当时函数在上单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论