




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页2025年中考数学总复习《二次函数中等腰直角三角形的存在性问题》专项检测卷附答案学校:___________姓名:___________班级:___________考号:___________一、填空题1.如图,P是抛物线y=2(x﹣2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=.2.将抛物线y1=x2向右平移2个单位,得到抛物线y2的图象.P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=二、解答题3.如图,将抛物线y=x2向右平移a个单位长度,顶点为A,与y轴交于点B,且(1)求a的值.(2)在图中的抛物线上是否存在点C,使△ABC为等腰直角三角形?若存在请求出点C的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系xOy中,抛物线y=−x2+bx+c交x轴于C1,0,(1)求抛物线的解析式及顶点坐标;(2)在线段DE上,是否存在一点P,使得△DCP是等腰直角三角形,如果存在,求出点P的坐标;如果不存在,请说明理由;(3)点A−3,5,B0,5,连接AB,若二次函数y=−x2+bx+c5.如图,抛物线y=ax2+bx+2交x轴于点A(-3,0)和点B(1,0),交y轴于点C(1)求这个抛物线的函数表达式.(2)点D的坐标为(-1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.6.如图,在等腰三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=13x2+bx-3(1)求二次函数的解析式,并把解析式化成y=a(x-h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.7.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.8.如图,在平面直角坐标系中,抛物线y=−x2+bx+c的图象与坐标轴相交于A、B、C三点,其中A点坐标为3,0,B点坐标为−1,0,连接AC、BC.动点P从点A出发,在线段AC上以每秒2个单位长度向点C做匀速运动;同时,动点Q从点B出发,在线段BA上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ(1)求b、c的值;(2)在P、Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?(3)在线段AC上方的抛物线上是否存在点M,使△MPQ是以点P为直角顶点的等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.9.如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.10.抛物线y=ax2−2bx+b(a≠0)与y轴相交于点C0,−3,且抛物线的对称轴为x=3,(1)求抛物线的解析式;(2)在x轴上方且平行于x轴的直线与抛物线从左到右依次交于E、F两点,若△DEF是等腰直角三角形,求△DEF的面积;(3)若P3,t是对称轴上一定点,Q是抛物线上的动点,求PQ的最小值(用含t11.二次函数y=ax2+bx+2的图象交x轴于A−1,0,B4,0两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点(1)求二次函数y=ax(2)连接BD,当t=32时,求(3)在直线MN上存在一点P,当ΔPBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标;(4)当t=54时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点参考答案1.【答案】5±52.【答案】3+3或3−3或2+3.【答案】(1)1(2)2,14.【答案】(1)y=−(x+1)2(2)存在,P(−1,2)(3)当m=1,或2<m≤5时,函数图象与线段AB有一个公共点5.【答案】(1)y=-23x2-43x+2;(2)S的最大值为174;(3)存在,点N的坐标为:(−7+734,−3+734)或(−1−734,−3+6.【答案】(1)y=13x2-16x-3(2)9.5(3)存在,P(-1,-1)7.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,P(3,158.【答案】(1)b=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 13061-16:2025 EN Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 16: Determination of volumetric swelling
- 注册会计师考试的行业现状与试题及答案
- 2024年预算员证书考试后的职业发展规划题试题及答案
- 2040年合同特权制度创新与发展研究
- 二手市场的创业书
- 2024-2025学年语文三年级下册25《慢性子裁缝和急性子顾客》教学设计+教学设计(统编版)
- 第四单元 经济大危机和第二次世界大战 教学设计 2023-2024学年部编版九年级历史下学期
- ISMS信息安全培训
- 第10课 阿长与《山海经》教学设计-2024-2025学年统编版语文七年级下册
- 2023九年级数学下册 第一章 直角三角形的边角关系5 三角函数的应用第2课时 三角函数的应用(2)教学实录 (新版)北师大版
- 护理学专业教师与学生
- 人工智能设计伦理知到智慧树章节测试课后答案2024年秋浙江大学
- 机台验收报告模板
- 《平台经济从业者职业伤害保障制度研究》
- 过氧化氢溶液含量>8%安全技术说明书MSDS
- 创伤失血性休克中国急诊专家共识(2023)解读课件
- 项目管理工程师招聘笔试题与参考答案(某大型集团公司)2024年
- TGDNAS 043-2024 成人静脉中等长度导管置管技术
- 2024年全国证券投资顾问之证券投资顾问业务考试经典测试题(附答案)
- TD/T 1039-2013 土地整治项目工程量计算规则(正式版)
- 《陆上风电场工程概算定额》NBT 31010-2019
评论
0/150
提交评论