




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本科生毕业设计(论文)题目:陈四楼煤矿1.8Mt/a新井设计矿井底板水突出可能性预测及防治
大学毕业设计任务书毕业设计题目:陈四楼煤矿1.8Mt/a新井设计毕业设计专题题目:矿井底板水突出可能性预测及防治毕业设计主要内容和要求:以实习矿井陈四楼煤矿条件为基础,完成陈四楼煤矿1.8Mt/a新井设计。主要内容包括:矿井概况、矿井工作制度及设计生产能力、井田开拓、首采区设计、采煤方法、矿井通风系统、矿井运输提升等。结合煤矿生产前沿及矿井设计情况,撰写一篇关于矿井底板水突出可能性预测及防治的专题论文。完成2006年《清洁生产杂志》上与采矿有关的科技论文翻译一篇,题目为“GeotechnicalconsiderationsinminebackfillinginAustralia”,论文4351字符。大学毕业论文答辩及综合成绩答辩情况提出问题回答问题正确基本正确有一般性错误有原则性错误没有回答答辩委员会评语及建议成绩:答辩委员会主任签字:年月日学院领导小组综合评定成绩:学院领导小组负责人:年月日摘要本设计包括三个部分:一般部分、专题部分和翻译部分。一般部分为陈四楼1.8Mt/a新井设计。陈四楼煤矿位于河南省永城市西北郊区,交通较为便利。井田倾向(东西)长约4.20km,走向(南北)长约5.90km,井田总面积为24.78km2。主采煤层为2#煤层,平均倾角为10.23°,煤层平均厚度为4.96m。井田地质条件较为简单。井田工业储量为177.638Mt,矿井设计可采储量129.985Mt。该矿井服务年限为55.55a,矿井正常涌水量为894m3/h,最大涌水量为1200m井田为立井两水平上下山开拓;大采高一次采全厚采煤法;矿井通风方式为中央并列式。矿井年工作日为330d,工作制度为“三八”制。一般部分共包括10章:1.矿区概述及井田地质特征;2.井田境界和储量;3.矿井工作制度、设计生产能力及服务年限;4.井田开拓;5.准备方式-带区巷道布置;6.采煤方法;7.井下运输;8.矿井提升;9.矿井通风与安全技术;10.矿井基本技术经济指标。专题部分的题目为:矿井底板水突出可能性预测及防治。翻译部分主要为澳大利亚充填开采土力学因素,英文题目为:GeotechnicalconsiderationsinminebackfillinginAustralia。关键字:陈四楼矿井;综采大采高;中央并列式;底板水突出;充填
ABSTRACTThisdesignincludesofthreeparts:thegeneralpart,specialsubjectpartandtranslatedpart.ThegeneralpartisanewdesignofChensiloumine.Chensilouminelinesinnorth-westofYongchenginHenanprovince.Thetrafficofroadandrailwayisconveniencetothemine.Thewidthoftheminefieldis4.20km,thewidthisabout5.90km,wellfarmlandtotalareais24.78km2.Thetwoisthemaincoalseam,anditsaveragedipangleis10.23degree.Thethicknessofthemineisabout4.96minall.Thefieldgeologicalconditionsaresimple.Theprovedreservesoftheminefieldare177.638Mt.Therecoverablereservesare129.985Mt.Andtheservicelifeofthemineis55.55years.Thenormalflowofthemineis894m3percenthourandthemaxflowofthemineis1200m3percenthour.Themineralwellgasgushesthedeallower,forFieldofverticalshafttransformationontwolevelsdownthemountaindevelopment;Bigminingheightinonetimesthethickcoalmethod;Mineventilationwayasthecentralparatactictype.Theworkingsystem“three-eight”isusedintheChensiloumine.Itproduced330d/a.Thisdesignincludestenchapters:1.Anoutlineoftheminefieldgeology;2.Boundaryandthereservesofmine;3.Theservicelifeandworkingsystemofmine;4.developmentengineeringofcoalfield;5.TheWaystoprepare-arrangetunnelswitharea;6.Themethodusedincoalmining;7.Transportationoftheunderground;8.Theliftingofthemine;9.Theventilationandthesafetyoperationofthemine;10.Thebasiceconomicandtechnicalnorms.Specialsubjectpartsoftopicsis:Theminefloorwaterprominentpossibilitypredictionandpreventionandcontrol.TranslationpartofmaincontentsesisGeotechnicalconsiderationsinminebackfillinginAustralia.Englishtopicis:GeotechnicalconsiderationsinminebackfillinginAustralia.Keywords:ChenSiloumine;Miningwholeheightfullymechanized;Thecentralparatactictype;Bottomwateroutstanding;Backfilling.
TOC\h\z\t"标题1,2,标题3,3,标题,1"目录1矿区概述及井田地质特征 页英文原文GeotechnicalconsiderationsinminebackfillinginAustraliaN.Sivakugana,*,R.M.Rankineb,K.J.Rankinea,K.S.RankineaaSchoolofEngineering,JamesCookUniversity,Townsville4811,AustraliabCanningtonMine,BHPBilliton,P.O.Box5874,Townsville4810,AustraliaAbstract:Minebackfillingcanplayasignificantroleintheoveralloperationofamineoperation.IntheAustralianminingindustry,wheresafetyisaprimeconsideration,hydraulicsystemsarethemostcommonbackfillsdeployed.Manyaccidentsreportedathydraulicfillminesworldwidehavemainlybeenattributedtoalackofunderstandingoftheirbehaviourandbarricadebricks.ThispaperdescribesthefindingsfromanextensivelaboratorytestprogrammecarriedoutinAustraliaonmorethan20differenthydraulicfillsandseveralbarricadebricks.Alimiteddescriptionofpastebackfillsisalsoprovided,andtheusefulnessofnumericalmodellingasaninvestigativetoolishighlighted.Keywords:Hydraulicfills;Mining;Backfills;Pastefills;Geotechnical1.IntroductionIntheminingindustry,whenundergroundorebodiesareextracted,verylargevoidsarecreated,whichmustbebackfilled.Thebackfillingstrategiesdeployedoftenmakeuseofthewasterockortailingsthatareconsideredby-productsoftheminingoperation.Thisisaneffectivemeansoftailingdisposalbecauseitnegatestheneedforconstructinglargetailingdamsatthesurface.Thebackfillingofundergroundvoidsalsoimproveslocalandregionalstability,enablingsaferandmoreefficientminingofthesurroundingareas.TheneedforbackfillingisamajorissueinAustralia,where10millioncubicmetresofundergroundvoidsaregeneratedannuallyasaresultofmining[1].Therearetwobasictypesofbackfillingstrategies.Thefirst,uncementedbackfilling,doesnotmakeuseofbindingagentssuchascement,andtheircharacteristicscanbestudiedusingsoilmechanicstheories.Atypicalexampleofuncementedbackfillingistheuseofhydraulicfillsthatareplacedintheformofslurryintotheundergroundvoids.Thesecondcategory,cementedbackfilling,makesuseofasmallpercentageofbindersuchasPortlandcementorablendofPortlandcementwithanotherpozzolansuchasflyash,gypsumorblastfurnaceslag.ThepurposeofthispaperistoanalysethefindingsfromanextensivelaboratorytestprogrammecarriedoutinAustraliaonhydraulicfillsandseveralbarricadebricks.Hydraulicfillsareuncementedtechniques,andareoneofthemostwidelyusedbackfillingstrategiesinAustralia.Morethan20differenthydraulicfills,representingawiderangeofminesinAustralia,werestudiedatJamesCookUniversity(JCU).ThegrainsizerdistributionsforallofthesefillsliewithinanarrowbandasshowninFig.1.Alongwiththem,thegrainsizedistributioncurvesforapastefillandacementedhydraulicfillarealsoshown.Itcanbeseenthatthecementedhydraulicfillfallswithinthesamebandasthehydraulicfill.Theadditionofaverysmallpercentageofcementhasalimitedeffectongrainsizedistribution.Pastefillsgenerallyhaveamuchlargerfinefractionthanhydraulicfillsorcementedhydraulicfills,buthavenegligiblecolloidalfractionfinerthan2μm.Fig.1.Typicalgrainsizedistributioncurvesforhydraulicfills,cementedhydraulicfillsandpastefills.2.HydraulicbackfillsHydraulicfillsaresimplysiltysandsorsandysiltswithoutclayfraction,andareclassifiedasMLorSMundertheUnifiedSoilClassificationSystem.Theclayfractionisremovedthroughaprocessknownasdesliming,wherebytheentirefillmaterialiscirculatedthroughhydrocyclonesandthefinefractionisremovedandthensenttothetailingsdam.Theremaininghydraulicfillfractionisreticulatedintheformofslurrythroughpipelinestoundergroundvoids.Overthepastdecadetherehasbeenasteadyincreaseinthesolidcontentofthehydraulicfillslurryplacedinminesinanattempttoreducethequantityofwaterthatmustbedrainedandincreasetheproportionofsolids.Thechallengeposedbyahighsolidcontentisthatitbecomesdifficulttotransporttheslurrythroughthepipelinesduetorheologicalconsiderations.Currently,solidcontentsof7580%arecommon,althoughevenat75%solidcontent,assumingaspecificgravityof3.00forthesolidgrains,50%ofslurryvolumeiswater.Therefore,thereisopportunityforasubstantialamountofwatertobedrainedfromthehydraulicfillstope.Tocontainthefill,thehorizontalaccessdrivescreatedduringminingaregenerallyblockedbybarricadesconstructedfromspeciallymadeporousbricks(Fig.2).Fig.2.Anidealisedstopewithtwosubleveldrains.Theaccessdrives,whicharemadelargeenoughtopermittheentryofmachineryduringmining,areblockedbythebarricadesduringfilling.Thedrivesareoftenlocatedatmorethanonelevel.Initially,thedriveslocatedatupperlevelsactasexitpointsforthedecantedwater,andalsoserveasdrainswhenthehydraulicfillrisesinthestope.2.1DrainageconsiderationsDrainageisthemostimportantissuethatmustbeconsideredwhendesigninghydraulicfillstopes.Therehavebeenseveralaccidents(namely,trappedminersandmachinery)worldwidecausedbywethydraulicfillrushingthroughhorizontalaccessdrives.Severalreasons,includingpoorqualitybarricadebricks,liquefaction,andpipingwithinthehydraulicfillareattributedtosuchfailures[2].Therefore,permeabilityofthehydraulicfillinthestopeisacriticalparameterinthedesign;continuouseffortismadeduringminingtoensurethatitiskeptaboveathresholdlimitinthevicinityof100mm/h[3].Largerpermeabilityleadstoquickerremovalofwaterfromthestope,thusimprovingthestabilityofthefillcontainedwithinthestope.PermeabilitytestsforminefillsandbarricadebricksarediscussedbyRankineetal.[4].Theconstantheadandfallingheadpermeabilitytestscarriedoutonthehydraulicfillsamplesgivepermeabilityvaluesintherangeof735mm/h.Inspiteofhavingpermeabilityvaluesmuchlessthanthe100mmthresholdsuggestedbyHergetandDeKorompay[3],eachofthesehydraulicfillshasperformedsatisfactorily.Anecdotalevidencesandbackcalculationsusingthemeasuredflowintheminestopessuggestthatthepermeabilityofthehydraulicfillinthemineisoftenlargerthanwhatismeasuredinthelaboratoryundercontrolledconditions.Kuganathan[5]andBradyandBrown[6]proposedpermeabilityvaluesintherangeof3050mm/h,whicharesignificantlylargerthanthosemeasuredinthelaboratoryforsimilarfills.ThesevaluesaremuchlessthanthethresholdlimitprescribedbyHergetandDeKorompay[3],suggestingthatitisaconservativerecommendation.2.2StabilityconsiderationsThestabilityofthehydraulicfillstopeduringandafterthedrainageperioddependsonseveralparametersthatdeterminethestrengthandthestiffnessofthehydraulicfillmass.Theseparameterscanbemeasuredinthelaboratoryusingreconstitutedsamplesorinthemineusinginsitutestingdevices.Duetothedifficultiesandhighcostsassociatedwithcarryingtheinsitutestingrigsintotheundergroundopenings,laboratorytestsarethepreferredalternatives.Strengthandstiffnessaredirectlyrelatedtotherelativedensityofthefill.Whenthehydraulicfillisdenser,therelativedensityandfrictionanglearehigher,andthusthefillismorestable.Ingeotechnicalengineering,thereareseveralempiricalcorrelationsrelatingrelativedensitytotheYoung’smodulusandfrictionangleofagranularsoil.2.2.1MaximumandminimumdrydensitytestsAlargervoidratiodoesnotalwaysmeanaloosergranularsoil.Relativedensityisagoodmeasureofthedensityofthegrainpacking,anddependsonthemaximumandminimumpossiblevoidratiosforthesoilwhilststillmaintainingintergranularcontact.Theminimumvoidratioisgenerallydeterminedbypouringthedrytailingsfromafixedheightsothatthegrainsareplacedataveryloosestate[7].Themaximumvoidratioisgenerallyachievedbysaturatingthetailingsandvibratingthemtoattaindensepacking[8].Thesetwoextremevoidratiosprovidethelowerandupperboundforthevoidratios,and,dependingonwherethecurrentvoidratioofthehydraulicfillis,therelativedensityisdefinedas:(1)LaboratorysedimentationexercisesatJCUlaboratories,duringwhichhydraulicfillingprocessesweresimulated,showedconsistentlythatwhenslurrysettlesunderitsself-weight,therelativedensityofthefillisintherangeof4070%(Fig.3).Fig.3.Relativedensityofthehydraulicfillssedimentedinthelaboratory.SimilarobservationsweremadebyPettiboneandKealy[9]atselectedminesintheUnitedStates.Theinsitumeasurementsshowedrelativedensityvaluesrangingfrom44to66%atfourdifferentmines.Thelaboratoryexercisealsoshowedthatthehydraulicfillslurrysettlestoadrydensity(g/cm3)of0.6timesthespecificgravity(Gs)forawiderangeoftailingswithspecificgravityvaluesrangingfrom2.8to4.4.Drydensity(rd)andvoidratio(e)arerelatedby:(2)Thisimpliesthatallthehydraulicfillssettletoavoidratioof0.67andporosityof40%.Thelaboratorysedimentationexerciseverifiesthis.2.2.2OedometertestsOedometertestsarecarriedoutonhydraulicfillstodeterminetheconstitutivemodellingparametersfortheCamClaymodeleoneoftheconstitutivemodelsthatcanbeadaptedforhydraulicfillswhenanalysedusingnumericalmodellingpackagessuchasFLAC,FLAC3DorABAQUS.Inaddition,oedometertestsareusefulindeterminingtheconstrainedmodulus(D)fromwhich,Young’smodulus(E)canbeestimatedforanassumedvalueofPoisson’sratiousingthefollowingequation.(3)Young’smodulusisacrucialparameterindeformationcalculationsusingmostconstitutivemodels.Theoedometertestsonthehydraulicfillsshowedsignificantcreepsettlementsthattookplaceonthecompletionofconsolidationsettlements.Thishasyettobeverifiedquantitativelyandonafull-scalestope.2.2.3DirectsheartestDirectsheartestsarecarriedouttodeterminethepeakandresidualfrictionangleofthehydraulicfill.Thetestsarecarriedoutonreconstitutedhydraulicfillsrepresentingtheinsitugrainpackinginthestope,whichcanbeatrelativedensitiesof40--70%.Sincethereisnoclayfraction,cohesioniszero.DirectsheartestsconductedatJCUrevealthatthefrictionanglesdeterminedfromdirectsheartestsaresignificantlyhigherthanthosedeterminedforcommongranularsoils.Thiscanbeattributedtotheveryangulargrainsthatresultfromcrushingtherockwaste,whichinterlockmorethanthecommongranularsoils.Theangulargrainscanbeseeninthescanningelectronmicrographsofthehydraulicfillsamples(Fig.4).Fig.4.Scanningelectronmicrographofahydraulicfillsample.2.2.4PlacementpropertytestAplacementpropertytestforhydraulicfillswasproposedbyClark[10].Thisisessentiallyacompactiontest,wherethecompactiveeffortisappliedthrough5minofvibrationonavibratingtable.Porosityattheendofvibrationisplottedagainstthewatercontent.Alternatively,drydensitycanbeplottedagainstwatercontent,asshowninFig.5.Hereaistheaircontent,andthecontoursofa=0,3,10,20and30%areshowninthefigure.Theshadedregioniswherethehydraulicfillcanexistwhilstmaintainingintergranularcontact.Theslurryfollowsasaturationlinewhensettlingunderitsself-weight,withthedensityincreasingwithsomevibratoryloading.Oneofthemainapplicationsoftheplacementpropertytest,asinacompactiontest,istodetermineoptimumwatercontent.InFig.5,theoptimumwatercontentofthefillis14%,withthemaximumdrydensityof2.42t/m3.Thiswatercontentcanalsobeestimatedfromamaximumdrydensitytestandthesaturationlineas12%.Thesecurvesareusefulinassessingthecontractiveordilativebehaviourofhydraulicfillsatvariouswatercontents.Forexample,whenthefillinFig.5issubjectedtovibratoryloading(e.g.,duetoblasting)at14%watercontentandadrydensityof2.0t/m3,itwilldensify,whilstthesamefillat8%watercontentanddrydensityof2.2t/m3willbecomelooser.Fig.5.Placementpropertycurveofahydraulicfillsample.3.BarricadebricksforhydraulicfillminesBarricadefailureinundergroundminingoperationsisaprimarysafetyconcernbecauseofthepotentialconsequencesoffailure.Between1980and1997,11barricadefailureswererecordedatMountIsaMinesinbothhydraulicandcementedhydraulicfills[5].In2000,abarricadefailureattheNormandyBronzewingMineinWesternAustraliaresultedinatriplefatality,andtwopermeablebrickfailureswerereportedlaterthatsameyearasaresultofhydraulicfillcontainmentattheOsborneMineinQueensland[1].Thespecializedbarricadebricksoftenusedforthecontainmentofhydraulicfillinundergroundminesaregenerallyconstructedofamortarcomposedofmixtureofgravel,sand,cementandwaterattheapproximateratioof40:40:5:1,espectively.Fig.6showsaphotographof(a),abarricadebrickand(b),anundergroundcontainmentwallconstructedfrombricks.Traditionally,thewallshavebeenconstructedinaverticalplane,buttherecentindustrytrendhasbeentoincreasewallstrengthbyconstructingtheminacurvedmanner,withtheconvextowardthehydraulicfillasshowninFig.6b.(a)(b)Fig.6.Porousbrickbarricade.(a)Abrick,(b)brickbarricadeunderconstructioninamine.Althoughitisknownwithintheminingindustrythattheporousbricksusedinundergroundbarricadeconstructionarepronetovariabilityinstrengthproperties[5],themanufacturersoftenguaranteeaminimumvalueforuniaxialcompressivestrengthforthebricksintheorderof10MPa[11].Kuganathan[5]andDuffieldetal.[11]havereporteduniaxialcompressivestrengthvaluesfrom5MPatoover26MPa.Aseriesofuniaxialcompressivestrengthtestsundertakenonalargesampleofbrickcoreshavedemonstratedthescatterofresults,butmoreimportantly,havehighlightedadistinctvariationinbrickperformancewhensaturated,asitwouldoccurinthemines.Twoidenticalcylindricalcoreswerecutfrom29porousbarricadebricks.Oneofthebrickcoresfromeachoftheindividualbrickswastesteddry,andtheothercorewastestedafterhavingbeensaturatedforeither7or90days.Thestrengthanddeformationparameters(namely,theuniaxialstrength,Young’smodulus,andtheaxialfailurestrain)forthewetanddrycoresareshowninFigs.7--9.Fig.7.Uniaxialstrengthofdryandwetbricks.Fig.8.Young’smodulusofdryandwetbricks.Fig.9.Axialfailurestrainsofdryandwetbricks.Firstly,theextremescatterbetweenallresultsreiteratesthesignificantdeviationinbrickquality.Fig.7showstheaverageuniaxialcompressivestrengthofdrybrickstofallbetween6and10MPa,whenthebrickmanufacturersguaranteeminimumof10MPa.Itcanalsobeseenfromthisfigurethatthereisadistinctlossofcompressivestrengthasaresultofwettingthebrick.Therewasnosignificantdifferencebetween7and90dayssoaking,implyingthatthestrengthlossoccursimmediatelyuponwetting.Thislossappearstobeintheorderofapproximately25%,whichisnotableconsideringthatbricksaregenerallyexposedtosaturatedconditionswhenplacedunderground,andallmanufacturerstrengthspecificationsarebasedonbricksthataretesteddry.Thestiffnessalsoappearstobereducedbywetting(Fig.8).TheYoung’smodulusofthedrycoresrangedbetween1and3.5MPa.Thelengthoftimethebrickswerewetteddidnothaveasignificantimpactonthemagnitudeofthereductioninstiffness.Thepeakfailureaxialstrainwasnotreducedbywetting(Fig.9).Thecoresingeneralfailedunderanaxialstrainoflessthan1%.Theporousbricksaredesignedtobefreedrainingandtherefore,theirpermeabilityisatleastanorderofmagnitudegreaterthanthatofhydraulicfill.Thebarricadebrickshaveproven,overtime,tosatisfythefree-drainingsituation,andthereductionofpermeabilitythroughmitigationoffineshasnotbeenrecorded.Rankineetal.[4]carriedoutconstantheadandfallingheadpermeabilitytestsonseveralbarricadebricksandreportedpermeabilityvaluesintheorderof3500mm/h,threeordersofmagnitudegreaterthanthepermeabilityofthetailings.4.PastefillLikehydraulicfill,pastefillfallsintothecategoryofthickenedtailings.AconceptualframeworktodescribethickenedtailingsintermsofconcentrationandstrengthisshowninFig.10[12,13].Fig.10.Thickenedtailingscontinuum[13].Pastefilliscomprisedoffullmilltailingswithatypicaleffectivegrainsizeof5mm,mixedwithasmallpercentageofbinder,intheorderof3--6%byweight,andwater.Itisthedensestformofbackfillinthespectrumofthickenedtailingsplacedundergroundasabackfillmaterial.Theacceptanceofpastebackfillasaviablealternativetohydraulicslurryandrockfilldidnottrulyoccuruntilthemid-tolate-1990swiththeconstructionandsuccessfuloperationofseveralpastebackfillsystemsinCanadaandtheBHPBillitonCanningtonMineinAustralia.Sinceadeslimingofthetailingsisnotundertaken,thereisasubstantialfinecontentinpastefills(Fig.1).Ageneric‘‘ruleofthumb’’forthegrainsizedistributionisforaminimumof15%ofthematerialtobefinerthan20mm,whichensuresthatthesurfaceareaofthegrainsislargeenoughtoprovideadequatesurfacetensiontoensurethatthewaterisheldtothesolidparticlesandtoprovideaverythin,permanentlubricatingfilm.Pastefilltypicallyshowsnon-NewtonianeBinghamplasticflowcharacteristics,resultinginplugflow(batchesflowinsolidslugs)characteristicsofthepaste.Asmostoftheearlyresearchperformedonpastefillswasonthetransportationanddepositionofthepaste,themajorityofthedefinitionsofthepastearebasedonitsrheologicalcharacteristics.Table1summarisessomecommoncharacteristicsofthethickenedtailingscontinuumshowninFig.10[14].Hydraulicfillsfallintothethickenedtailingsprofile.Asignificantdifferencetonoteisthatthewatercontentinpastefillisretainedonplacement,throughthelargesurfaceareaofthegrains,eliminatingtheneedforthedesignofdrainageofthefillorbarricades.Thedesignrequirementsforpastefilledstopesarethenreducedtostaticanddynamicstabilityrequirements.Bydesigningthefillmasseswithsufficientstrengthtoensuretheverticalfacesofthebackfilledstopesremainstablethroughouttheminingoftheadjacentstopes,thestaticstabilityrequirementsaresatisfied.Ifthepastebecomesunstable,theadjacentfacesmayrelaxanddisplaceintotheopenstope,causinghighlevelsofdilutionandlossofminingeconomies.Therequiredstrengthofthebackfillsistypicallycalculatedusinganalyticalsolutiontechniques.Morerecently,numericalmodellingsolutionshavebeenusedtodeterminebackfillstabilitythroughouttheentireminingsequence.Thedynamicstabilityofthepastefillstopesisaddressedbydesigningthebackfillmasstoresistliquefactionorotherseismicactivities.Duetotheincreasedresidualmoisturecontentofpaste,thereisanincreasedliquefactionpotentialriskforthepaste.Cloughetal.showedthatcementedsandwithauniaxialcompressivestrengthof100kPawascapableofresistingaseismicactivitymeasuring7.5ontheRichterscale.Thisfigurehasbeenadoptedbytheminingindustryastheminimumdesignstrengthfillforanyfillmass.Thestrengthofthepastesatisfyingthestaticstabilityrequirementsaregenerallyinexcessofdynamicstrengthrequirements.Barricadesaredesignedasundergroundretainingwalls.Thestructuraldesignandconstructionofthewallsmayvaryslightlytothosedesignedforhydraulicfills,duetotheabsenceofdrainagecapabilities.Thebarricadesaredesignedastemporarystructuresinpastefillstopes.Thewallsmustbedesignedtoretaintheliquidmassofthefill,untilsuchtimeasithascuredsufficientlytoactasaplugatthebaseofthestope,thuspreventingtheadditionaldepositedpastefromenteringthemineworkings.Table1MaterialpropertiesforthickenedtailingscontinuumMaterialpropertySlurryThickenedtailingsPasteParticlesizeCoarsefractiononly.Noarticleslessthan20mm.SegregationduringtransportationandorplacementisdependentonlyonthecoarsefractionSomefinesincluded(typically!15%),finescontenttendstomodifybehaviourfromslurryei.e.rheologicalcharacteristicsmoresimilartopaste,howeverdoessegregatewhenboughttorest.SegregationduringtransportationandorplacementisdependentonlyonthecoarsefractionAdditional/mostfines(typically15%(min)>20μmPulpdensity(%)60-7270-7878-82Flowregimes/linevelocitiesCriticalflowvelocity.Tomaintainflowmusthaveturbulentflow(vel<2m/s).Ifvel<2m/ssettlingoccursNewtonianflowCriticalflowvelocity.Tomaintainflowmusthaveturbulentflow(vel<2m/s).Ifvel<2m/spartialsettlingoccursNewtonianflowNocriticalpipelineflowvelocity,i.e.nosettlinginpipeLaminar/plugflowYieldstressNominimumyieldstressNominimumyieldstressMinimumyieldStressPreparationCycloneCycloneendelutriationFilter/centrifugeSegregationinstopeYes/highSlight/partialNoneDrainagefromStopeYesPartial/limitedNone/insignificantFinaldensityLowMedium/highHighSupernatantwaterHighSomeNonePostplacementshrinkageHighInsignificantInsignificantRehabilitationDelayedImmediateImmediatePermeabilityMedium/lowLowVerylow5.NumericalmodellingInlarge-scaleundergroundminingoperations,whereinsitumonitoringofstresses,strains,displacementsandporepressuresisoftenverydifficult,expensiveornotfeasibleatall,theuseofnumericalmodellingtechniquesbecomesextremelyvaluableinunderstandingandpredictingthebehavioursofboththematerialsandthesystemsbeingmodelled.FLACandFLAC3Dareexplicit,finitedifferencesoftwarepackagesspecificallydesignedforsolvinggeotechnicalandminingproblemsintwoandthreedimensions,respectively.TheresearchgroupatJCUhasusedFLAC3Dinsimulatingthefillingoperationsinahydraulicfillandpastefillstopes,studyingthedevelopmentsofstressesanddrainagewithinthefill.Theintentionofthispaperhasnotbeentodetailthefindingsfromthesesimulationsbutrathertohighlightthepotentialthesemodellingtoolshavetodramaticallyincreasetheconfidencewithwhichstopepredictionsmaybemade,ultimatelyleadingtooptimisedmineoperationandsafety.6.ConclusionsCementedbackfillinganduncementedbackfillingarethetwostrategiesusedinminebackfillinginAustralia.Hydraulicfillsandpastefillsareexamplesofuncementedandcementedbackfills,respectively.AseriesoflaboratorytestscarriedoutatJamesCookUniversityonmorethan20differenthydraulicfillsamplessuggestthefollowing:Thehydraulicfill,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 撤柜合同范本怎么写
- 购车合同范本关于发票
- 超市代理招商合同范本
- 防泥石流安全知识
- 音乐知识点微课
- 2017年四川高职单招语文、数学、英语真题(中职类)
- 预想结果日语怎说课
- 广东理工学院《英语专业前沿课程》2023-2024学年第二学期期末试卷
- 丽水市松阳县2025年六年级下学期小升初招生数学试卷含解析
- 福建农林大学金山学院《3DMAX》2023-2024学年第一学期期末试卷
- 2025年郑州铁路职业技术学院单招职业技能测试题库必考题
- 家具全屋定制的成本核算示例-成本实操
- 合伙经营煤炭合同范本
- 2025年安庆医药高等专科学校单招职业适应性考试题库及答案1套
- “艾梅乙”感染者消除医疗歧视制度-
- 煤矿单轨吊机车检修工技能理论考试题库150题(含答案)
- 医院院长聘用合同范本
- 2025年高考物理一轮复习:热学(解析版)
- 2024年洛阳市孟津区引进研究生学历人才考试真题
- 化工产品代加工协议模板
- 阴滋病的课题:拉开攻破的序幕
评论
0/150
提交评论