2025年新科版高一数学下册月考试卷_第1页
2025年新科版高一数学下册月考试卷_第2页
2025年新科版高一数学下册月考试卷_第3页
2025年新科版高一数学下册月考试卷_第4页
2025年新科版高一数学下册月考试卷_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年新科版高一数学下册月考试卷118考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共5题,共10分)1、以等速度行驶的城际列车,若将速度提高25%,则相同距离的行车时间可节省k%,那么k的值是()A.35B.30C.25D.202、已知点A(1,0,2),B(1,-3,1),点M在z轴上且到A、B两点的距离相等,则点M的坐标为()A.(-3,0,0)B.(0,-3,0)C.(0,0,-3)D.(0,0,3)3、【题文】若存在x∈[﹣2,3],使不等式2x﹣x2≥a成立,则实数a的取值范围是()A.(﹣∞,1]B.(﹣∞,﹣8]C.[1,+∞)D.[﹣8,+∞)4、如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面B.直线BE与直线AF是异面直线C.平面BCE⊥平面PADD.面PAD与面PBC的交线与BC平行5、已知数列{an}

满足递推关系:an+1=anan+1a1=12

则a2017=(

)

A.12016

B.12017

C.12018

D.12019

评卷人得分二、填空题(共6题,共12分)6、已知f(x)=x+1,g(x)=2x,h(x)=-x+6,设函数F(x)=min{f(x),g(x),h(x)},则F(x)的最大值为____.7、若函数在上单调递减,则实数的取值范围是.8、一个四边形的斜二测直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是______。9、【题文】已知圆的极坐标方程为以极点为原点,极轴为轴的正半轴建立平面直角坐标系,则圆的直角坐标方程为_______________,若直线与圆相切,则实数的值为_____________.10、【题文】设函数是周期为5的奇函数,当时,则=____.11、设f(x)是定义在实数集R上的函数,且满足f(x+2)=f(x+1)-f(x),如果f(2)=lg15,则f(0)=______.评卷人得分三、作图题(共9题,共18分)12、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.13、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.14、作出下列函数图象:y=15、作出函数y=的图象.16、画出计算1++++的程序框图.17、以下是一个用基本算法语句编写的程序;根据程序画出其相应的程序框图.

18、请画出如图几何体的三视图.

19、某潜艇为躲避反潜飞机的侦查,紧急下潜50m后,又以15km/h的速度,沿北偏东45°前行5min,又以10km/h的速度,沿北偏东60°前行8min,最后摆脱了反潜飞机的侦查.试画出潜艇整个过程的位移示意图.20、已知简单组合体如图;试画出它的三视图(尺寸不做严格要求)

评卷人得分四、证明题(共3题,共21分)21、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.22、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.

(1)求证:E为的中点;

(2)若CF=3,DE•EF=,求EF的长.23、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分五、解答题(共1题,共3分)24、某风景区出售旅游年卡;每张144元,使用规定:不记名,每卡每次只限1人,每天只限一次,某公司有48名职工,公司打算组织员工分组分批集体旅游,除需购买若干张年卡外,每次还需包一辆汽车(最多乘48人)每次包车费54元,若使每位员工游玩8次.

(1)如果买16张卡;那么游玩8次,每位员工需交多少钱?

(2)买多少张卡最合算(即员工交钱最少),每位员工需交多少钱?参考答案一、选择题(共5题,共10分)1、D【分析】【分析】设距离为S,原来速度为v.分别表示现在速度、时间、原来的时间,根据“时间可节省k%”列方程求解.【解析】【解答】解:设距离为S,原来速度为v.则原来行车时间为;现在速度为(1+25%)v,时间为.

根据题意得=k%.

解得k=20.

故选D.2、C【分析】根据z轴上点的特点可知:设M(0,0,z),再根据空间中两点之间的距离公式可以求得【解析】【答案】C3、A【分析】【解析】

试题分析:构造函数f(x)=2x﹣x2,由存在使不等式2x﹣x2≥a成立(如果是任意使不等式2x﹣x2≥a成立则易误解),可知即答案选A.

考点:二次函数的最值【解析】【答案】A4、C【分析】解:画出几何体的图形,如图,

由题意可知;A,直线BE与直线CF共面,正确;

因为E;F是PA与PD的中点,可知EF∥AD;

所以EF∥BC;直线BE与直线CF是共面直线;

B;直线BE与直线AF异面;满足异面直线的定义,正确.

C;因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确.

D;∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确.

故选C.

几何体的展开图;复原出几何体,利用异面直线的定义判断A,B的正误;

利用直线与平面垂直的判定定理判断C的正误;利用直线与平面平行的判定;性质定理判断D的正误.

本题是中档题,考查空间图形中直线与直线、平面的位置关系,考查异面直线的判断,基本知识与定理的灵活运用.【解析】【答案】C5、C【分析】【分析】本题考查了数列递推关系、等差数列的通项公式,an+1=anan+1,aa1==12,可得1an+1鈭�1an=1dfrac{1}{{a}_{n+1}}-dfrac{1}{{a}_{n}}=1..再利用等差数列的通项公式即可得出,属于中档题.【解答】解:隆脽an+1=anan+1a1=12隆脿1an+1鈭�1an=1

隆脿

数列{1an}

是等差数列;首项为2

公差为1

隆脿1a2017=2+2016=2018

则a2017=12018

故选C.【解析】C

二、填空题(共6题,共12分)6、略

【分析】

由题意得:

∵f(x)=x+1,g(x)=2x;h(x)=-x+6,设函数F(x)=min{f(x),g(x),h(x)};

∴F(x)=则F(x)的最大值为图中C点的纵坐标(f(x)与h(x)交点的纵坐标)

即x+1=-x+6

x=

∴则F(x)的最大值为:

故答案为:

【解析】【答案】根据函数F(x)=min{f(x),g(x),h(x)},结合函数f(x),g(x),h(x)的函数图象,得到F(x)=的图象;则F(x)的最大值为图中C点的纵坐标(f(x)与h(x)交点的纵坐标)

7、略

【分析】试题分析:在上单调递减,则即.考点:函数的单调性.【解析】【答案】.8、略

【分析】试题分析:该四边形的斜二测画法的直观图(如图所示),其中则所以直观图的面积则原四边形的面积为.考点:平面图形的直观图.【解析】【答案】9、略

【分析】【解析】由得因为直线与圆相切,所以解得

考点:直线与圆相切【解析】【答案】10、略

【分析】【解析】

试题分析:由周期为5的奇函数,

考点:函数的周期性和奇偶性.【解析】【答案】-111、略

【分析】解:∵f(x+2)=f(x+1)-f(x);

∴当x=0时;f(2)=f(1)-f(0);

即f(0)=f(1)-f(2);

∵f(2)=lg15;

∴f(0)=f(1)-f(2)=lg-lg15=lg()=lg=-1;

故答案为:-1.

根据抽象函数关系令x=0;代入进行求解即可.

本题主要考查函数值的计算,利用赋值法令x=0是解决本题的关键.比较基础.【解析】-1三、作图题(共9题,共18分)12、略

【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.

∵点A与点A′关于CD对称;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:铺设管道的最省费用为10000元.13、略

【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.

∵点A与点A′关于CD对称;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:铺设管道的最省费用为10000元.14、【解答】幂函数y={#mathml#}x32

{#/mathml#}的定义域是[0;+∞),图象在第一象限,过原点且单调递增,如图所示;

【分析】【分析】根据幂函数的图象与性质,分别画出题目中的函数图象即可.15、【解答】图象如图所示。

【分析】【分析】描点画图即可16、解:程序框图如下:

【分析】【分析】根据题意,设计的程序框图时需要分别设置一个累加变量S和一个计数变量i,以及判断项数的判断框.17、解:程序框图如下:

【分析】【分析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.18、解:如图所示:

【分析】【分析】由几何体是圆柱上面放一个圆锥,从正面,左面,上面看几何体分别得到的图形分别是长方形上边加一个三角形,长方形上边加一个三角形,圆加一点.19、解:由题意作示意图如下;

【分析】【分析】由题意作示意图。20、

解:几何体的三视图为:

【分析】【分析】利用三视图的作法,画出三视图即可.四、证明题(共3题,共21分)21、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.22、略

【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE

OA=OE=>∠OAE=∠OEA

DE切圆O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

⇒OE∥AD

=>E为的中点.

(2)解:连CE;则∠AEC=90°,设圆O的半径为x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圆O于E=>△FCE∽△FEA

∴,

即DE•EF=AD•CF

DE•EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC•FA=3x(3+2)=15

∴EF=23、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论