




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
保密★使用前保密★使用前2024-2025学年度上学期泉州市高中教学质量监测高二数学参考答案、12345678DDBACDBC9 四、1513分)列基本量法、等差数列的性质等基础知识,考查逻辑推理能力、运等,考查函数与方程思想、化归与转化思想等,体现基础性和综合由已知3d=14每个式子各1分).................解得每个结果各1分).....................................................................4分所以an=a1+(n-1)×d=3+(n-1)×2=2n+1(公式1分).6分...............................3所以d=a3-a2=2,4分所以an=a2+(n-2)×d=5+(n-2)×2=2n+1(公式1分).6分因为bn=代通项1分).9分【命题意图】本小题主要考查直线与平面的位置关系、求异面直线所成角等基础知识;考查空间想象、推理论证、运算求解等能力;考查化归与转化等思想;体现基础性和综合性,导向对发展直观想象、逻辑推理、数学运算等核心素【试题解析】(1)解法一:因为M,N分别为PA,PB的中点,所以MN//△OCD为等边三角形,所以∠DCO=60。=∠AOC,所以CD//AB//MN,··································································································5分又MN丈平面PCD,CD平面PCD,所以MN//平面PCD,··············7分∠AOC=∠COD=60。,△OCD为等边三角形,所以∠DCO=60。=∠AOC,所以CD//AB,····································2分取CD中点Q,连结OQ,OP,则OQ⊥CD,OQ⊥AB,OP⊥平面ABDCOP所在的直线为x,y,z轴建立空间直角坐标系································································································3分又MN丈平面PCD,CD平面PCD,所以MN//平面PCD,··············7分所以∠AOC=∠COD=60o,△OCD为等边三角形,所以∠DCO=60o=∠AOC,所以CD//AB,····································2分取CD中点Q,连结OQ,OP,则OQ⊥CD,OQ⊥AB,OP⊥平面ABDCOP所在的直线为x,y,z轴建立空间直角坐标系MN=(0,2,0),···············则CD=MN,所以CD//MN,由四点不共线,易得CD//MN,···········5分又MN丈平面PCD,CD平面PCD,所以MN//平面PCD,··············7分角坐标系,················································································设异面直线AC与BM所成角为θ,则cosθ= ································································· 即直线AC与BM所成角的余弦值为,·····································15分解法二:连结CB,∠AOC=60o,△OAC为等边三角形,所以∠CAO=60o,在△ABC中,由余弦定理可得BC2=AC2+AB2—2AC.AB.cos60o=22+422×2×4×=12知BC⊥AC说明:若未证明,扣1分)CB所在的直线为x,y轴,l为z轴建立空间直角坐标系,如图,································································································9分C(0,0,0),A(2,0,0),B(0,2,0)····························10分所以AC=(2,0,0)··················设异面直线AC与BM所成角为θ,则cosθ= ································································· 即直线AC与BM所成角的余弦值为,·····································15分解法三:连结OC,因为点C,D为AB的三等分点,所以∠AOC=60o,连结OP,则OP⊥平面ABDC,所以OP⊥AB,OP⊥OA,OP⊥OC,又OB=2,PB=2,易得OP=························································ 设异面直线AC与BM所成角为θ,则|cosθ|= 即直线AC与BM所成角的余弦值为,·······························∠AOC=∠COD=60o,△AOC为等边三角形,所以,∠ACO=60o=∠COD,所以AC//OD,取AM中点E,连结OE,所以OE为△ABM的中位线,OE//BM,所以直线AC与BM所成角即为∠EOD或其补角················9分易得OP=2=OA,∠PAO=45o,在△AOE中,由余弦定理可得·································································过点E作EF//OP,交AB于F,连结FD,ED,则EF⊥平面ABDC,所以EF⊥FD,FD=,所以················································在△DOE中,由余弦定理可得即直线AC与BM所成角的余弦值为········································15分【命题意图】本小题主要考查曲线的方程、直线的方程、点线距离、弦长公式等基础知识,体现基础性和综合性,导向对发展直观想象、逻辑推理、数学运算等【试题解析】(1)解法一:设圆Γ的标准方程为(x+a)2+2+(--b)2=r2 则由已知Γ过P(0,-3),Q(0,3),R(-3,0),得{(0+a)2+(3-b)2=r2, ································································································3分所以圆Γ的方程为(x+1)2+y2=4;·················································5分解法二:设圆Γ的一般方程为x2+y2+Dx+Ey+F=0,······················1分································································································3分所以圆Γ的方程为x2+y2+2x-3=0;·············································5分(2)解法一:因为点P(0,-3),设直线PE的方程为y= 22-0=7,············································7分解得,···················································································································xE22777 解法二:过P作直线x=2的垂线,垂足P,设直线EF的斜率为k, 3于是圆心(-1,0)到直线PE的距离为于是圆心(-1,0)到直线PE的距离为7\777\777 又点Q(0,)到直线PE的距离为d1=43,····································14分22777 22777 22-0=7,············································7分 解得k=±,·········································································· 又因为k<0,所以k=-,·········记轨迹Γ的圆心H(-1,0),所以|FH|=9+12=21,过点F的切线长为|FH|=FH2-r2=································································· 解法四:过P作直线x=2的垂线,垂足P,设直线EF的斜率为k,则 k=-tan上PPF=-,·········于是圆心(-1,0)到直线PE的距离为d=,···································10分又点Q(0,)到直线PE的距离为,·······························解得,···················································································································解得点E的横坐标为xE=-,··········································直线与平面的位置关系、平面与平面的位置关系、求线面角及二面角等基础知识;考查空间想象、推理论证、运算求解等能力;考查化归与转化等思想;体现基础性和综合性,导向对发展直观想象、逻辑推理、数学运算等核心素养的AC丄BC.··························· 因为AC∥DF,所以DF丄平面BCFE VDEF=.S△EDF.BE=.2.因为三棱锥EBDF的体积为所以.·················设平面DEQ的法向量为,则所以取=1.所以,是平面DEQ的一个法向量.································································································8分所以平面DEQ丄平面BDF.···············VDEF=.S△EDF.BE=.2.2.BE=.························5分因为三棱锥EBDF的体积为所以.······························6分取BC的中点M,连接ME与BF交于点N,连接DN.因为Q为AC中点,所以QM∥AB.因为DE∥AB,所以QM∥DE,所以D,E,M,Q四点共面.··································································7分因为EF=2BM,EF∥BM,所以△EFN∽△MBN,且.所以BN2+MN2=BM2,所以BF丄ME.··········································又BFDF=F,BF,DF平面BDF,所以ME丄平面BDF,·········10分又因为ME平面DEQ,所以平面DEQ丄平面BDF.···························11分所以OE为PE在平面DEF内的射影,所以上OEP为直线PE与平面DEF所成的角,所以上OEP=α.··························································12分过O作OI⊥DF,垂足为I,连接PI,显然PI⊥DF,所以上OIP为二面角PDFE的平面角,所以上OIP=β.················13分所以tanα=,tanβ=.因为α=β,所以OE=OI,所以点O到点E的距离等于点O到直线DF的距离,所以点P到点B的距离等于点P到直线AC的距离,·························14分所以点P的轨迹是以B为焦点,直线AC为准线的抛物线在△ABC内的部分.·······························································································15分又点P到AC的距离为d,所以d=PB,··············· 所以PQ+d的最小值为·.·························································17分解法二:设P(x,y,0)(0<x,y<2,x+y<2),不妨设CF=t(t>0则E(0,2,t),显然i=(0,0,1)为平面DEF的一个法向量.则sinα=|cos<,i>|=.··························12分取y3=t,则z3=y.所以,j=(0,2,y)是平面PDF的一个法向量.所以cosβ=|cos<i,j>|=.·····································13分因为α=β,所以sin2α+cos2β=sin2α+cos2α=1,所以···································································所以点P的轨迹是以B为焦点,直线AC为准线的抛物线在△ABC内的部分.····································································································································································································又点P到AC的距离为d,所以d=PB,·············· 所以PQ+d的最小值为·5.····························································17分第三定义为背景考察椭圆、双曲线方程以及几何性质,直线与圆锥曲线的位置关系等基础知识;考查运算求解、推理论证等能力以及创新意识;考查化归与转化、数形结合、函数与方程、特殊与一般思想;体现基础性、综合性与创新当λ=2时,k1k2=2,所以,····································2分即y2=2|x21|,x≠±1,·······························································4分故没有分段不扣分··································5分即在|x|<1时,轨迹是椭圆2x2+y2=2去除左右顶点;当|x|>1时,轨迹是双曲线2x2—y2=2去除左右顶点注意到两直线关于x轴对称,·························································6分又曲线图形也关于x轴对称,故可得M1,P1关于x轴对称;N1,Q1关于x轴对称,所以T1必在x轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学语文一年级考试体系试题及答案
- 宠物主人常见的营养误区及试题及答案
- 计算机基础考试重难点分析试题及答案
- 2024年食品质检员心理素质要求试题及答案
- 美容师考试题目设计与解读技巧试题及答案
- 食品流通过程中的证据采集考查试题及答案
- 重大动物防控知识课件
- 实战经验的小学语文试题及答案
- 二手车评估师基础知识考试试题及答案
- 二手车评估师应试能力提升试题及答案
- 电网工程设备材料信息参考价(2024年第四季度)
- 非暴力沟通 情绪篇
- 氢氧化钙化学品安全技术说明书
- 人民医院整形外科临床技术操作规范2023版
- 2023-尔雅《星海求知:天文学的奥秘》课后章节答案
- LY/T 1955-2022林地保护利用规划林地落界技术规程
- 专练11(30题)(网格作图题)2022中考数学考点500题(吉林)解析版
- GB/T 1936.1-2009木材抗弯强度试验方法
- 马克思主义唯物史观课件
- 工商企业管理专业案例分析报告
- DB15T 2403-2021肉羊育种数据管理规范
评论
0/150
提交评论