




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
在处域中考照学错送/您我例
(含答案)
考生须知:
1.全卷共六大题,23小题.满分为120分.考试时间120分钟.
2.本卷答案必须做在答题纸的对应位置上,做在试题卷上无效.
温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!
一、选择题(本大题共有6小题,每小题3分,共18分。请选出各题中一个符合题意的正确
选项,不选、多选、错选,均不给分)
1、在0,-2,1,5这四个数中,最小的数是()
A.0B.-2C.1D.5
2、下列三条线段不能构成三角形的三边的是()
A.3cm,4cm,5cmB.5cm,6cm,11cm
C.5cm,6cm,10cmD.2cm,3cm,4cm
3、已知sin。=且,且。是锐角,则a等于()
2
A.75°B.60°C.45°D.30°
4、为了调查瑞州市2016年初三年级学生的身高,从中抽取出200名学生进行调查,这个问
题中样本容量为()
A.被抽取的200名学生的身高B.200C.200名D.初三年级学生的
身高
5、平行四边形、矩形、正方形之间的关系是()
B
6、下面几何体的主视图是()
住ET
ACD
二、填空题(本大题共6个小题,每小题3分,共18分.)
7、2016年我市经济依然保持了平稳增长。据统计,截止到今年4月底,
我市金融机构存款余额约为1193亿元,用科学计数法,应记为0
8
元6
4
2
8、分解因式:aa-16a=。O
9、有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环
数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小
林和小明两人中新手是o
10、定义新运算”※力规则:aXb=ab-a-b,如1派2=1乂2-1-2=-1。若xaxTR的两根为
X|,X2,贝|JX]XX2=O
11、如图a是长方形纸带,N/220°,将纸带沿哥'折叠成图b,再沿跖折叠成图C,则
图。中的N0叨的度数是。
12、如图,以()为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆半径为10cm,
小圆半径为6cm,则弦AB的长为<
AB
第12题至
三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程
或演算步骤.)
13、1)计算:板+(-)-2+(-1)°-2sin450
2)求满足=的x、丫的正整数解。
y+7x<22
14、如图,以AB为直径的00交AABC的BC、AC边与D、E两点,在图中仅以没有刻度的
直尺画出三角形的三条高(简单叙述你的画法)
(1)列举出这四人的名次排列所有可能出现的不同情况(2)求甲排在第一名的概率?
四.(本大题共4小题,每小题8分共32分。)
34X
18、如图,在3X3的方阵图中,填写了一些数和代数式(其中每个代数式
-2a
都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之y
和均相等.2y-xcb
(1)求磊y的值:(第18题)
(2)在备用图中完成此方阵图.34
-2
(备用图)
19、一次函数片M+b的图象与小y轴分别交于点力(2,0),8(0,4).
(1)求该函数的解析式;
(2)0为坐标原点,设M4?的中点分别为C、D,P为加上一动点,求尸外的最小值,
并求取得最小值时〃点的坐标.
第19题图
20、某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后
来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,结合题意写出当x取何值时,商场获利润不少于2160元?
21、小明用下面的方法求出方程26-3=0的解,请你仿照他的方法求出下面另外两个方
程的解,并把你的解答过程填写在下面的表格中.
方程换元法得新方程解新方程检验求原方程的解
3
令«=。加||2
3,=|>02
2«-3=0t=-
29
则2-3=01XI|
4
x+2\[x-3=0
%+7^^2-4=0
五.(本大题共1小题,共10分)。
22.阅读下列材料,并解决后面的问题。
a•Q…a
材料:我们知道,n个相同的因数a相乘可记为1,如2^=8,此时,3叫做以2为
底8的对数,记为log28(即log28=3)
n
一般地,若a=b(a>0且aWl,b>C),则n叫做以a为底b的对数,记为logob(BPlognb=n).
如3*=8b则4叫做以3为底81的对数,记为log381(BPlog381=4)
(1)计算以下各对数的值:log24=,log216=,log264=
⑵观察⑴中三数4、16、64之间满足怎样的关系式?1烟4、log216、1密64之间又满足怎
样的关系式?
(3)根据(2)的结果,我们可以归纳出:log*+log.N=log.MN(a>0且N>0)
请你根据塞的运算法则:以及对数的定义证明该结论。
六、(本大题共1小题,共12分)
23、如图,抛物线),二/-2尤-3与x轴交A、B两点(A点在B点左侧),直线/与抛物线
交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作,轴的平行线交抛物线于E点,求线段PE长度
的最大值;
(3)点G抛物线上的动点,在x铀上是否存在点F,使A、C、F、G这样的四个点为顶点的
四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
数学模拟试卷参考答案
一、选择题(本大题共有6小题,每小题3分,共18分。请选出各题中一个符合题意的正确
选项,不选、多选、错选,均不给分)
1、B2、B3、B4、B5、A6、A
二、填空题(本大题共6个小题,每小题3分,共18分.)
7、1.193X10"8、a(a+4)(a+2)(a-2)9、小林
10、011、120°12、16
三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程
或演算步骤.)
13、1)原式=+5............................................................................................................................3分.
2)解得xW7/5..................................................................2分
所以x=l,y=13................................................................................................................3分
14、如图:连AD、BE交于点G,连CG延长交AB于F。
AD、BE、CF即为高。..............3分
(有文字叙述,图画对即可)[
-
2
〔nx-\x+\(x-i)(x+i)
]4—4------=-------;-------------
X)XXX
X+IX1
—x―____
x(x-l)(x+l)~x-\................................................................................4分
=—=1
取3=2时,原式2-1.................................................................................................6分
16、证到0B=0C......................................................................................................3分
求到NB0C=100°........................................•・.............................................................6分
17、(1)列举如下:..............................................4分
(甲、乙、丁、丙)、(甲、丁、乙、丙)、(丁、乙、甲、丙)、(丁、甲、乙、丙)
(2)甲排在第一名的概率为二分之一......................................6分
四、(本大题共4小题,每小题8分共32分。)
18、(1)求才=一1,y=2;........................................................r.......3分
(2)在备用图中完成此方阵图......8分(除X、y外填错一个扣1分)
E3
□E
19>解:(1)将点A、B的坐标代入y=kx+b并计算得k=—2,b=4.
,解析式为:y=-2x4-4;................................................................................3分
(2)设点C关于点。的对称点为5,连结PC'、DC;,则PC=PC'.
・・・PC+PD=PC'+PD2C'D,即C'、P、D共线时,PC+PD的最小值是C'D.
连结CD,在Rt^DCC'中,C'D=2:oooooooooooooooooo5分
易得点P的坐标为(0,1)....................................................................................................8分
(亦可作RtAAOB关于y轴对称的4)
20、解:⑴若商店经营该商品不降价,则一天可获利润
100X(100-80)=2000(元)。。。。。。。。。。。。。。。2分
⑵①依题意得:
(100-80-x)(lOO+lOx)=2160
即X2-10X+16=0
解得:x]=2,x2=8
经检验:乂尸2,乂2=8都是方程的解,且符合题意.
答:一天要获利润2160元,则每件商品应降价2元或8元.0。。。。5分
②依题意得:y=(190-80-x)(100+lOx)
2
1r,函数关系式:y=-10X+100X+2000。。。。。。。。。。。。。。。。7分
,当2这x这8时商场获利润不少于2160元。°。。。。。。。。。,。。。。8分
21、原方程的解求出即给满分,未检验扣1分。
解:
换元法得新
方程解新方程检验求原方程的解r
方程
令«=,,则
fj=1>0»4=1,所以
Zi=1,t7=-3
工+2五-3=0
“+2r-3=0r2=-3<0(舍去)x=l.
……2分
……1分……3分4分
令
=t,=1>0,
Jx—2所以
%=1,t2=—2
x+Jx-2-4=0则
/2=-2<0(舍去)X—2=1,x=3.
......6分
产+-
2=0……7分……8分
……5分
五.“(木大题共I小题,共10分)。
22.(1)log24=2,log216=4,log264=6...........................................................................(3
分)
(2)416=64Iog24+log216尸“。。。。。。(4分)
(3)根据塞的运算法则:a':以及对数的定义证明(3)中结论。
设lo&.M=x那么有ax=M又设logaN=y那么有ay=M
xtyxy
故logilM+logMN=x+y而a=aa=MN根据对数的定义化成对数式为x+y=log删
♦•)lOgltM+lOgaN-lOgllMNo040<000000004000000000(10,分)
六、(本大题共1小题,共12分)
23、解:(1)令y=0,解得百二-1或々=3AA(-1,0)B(3,0)。。。。(2分)
将C点的横坐标x=2代入y=f-21-3得y=-3,・・・C(2,-3)
・,・直线AC的函数解析式是y=-xT。。。。。。。。。。。。。。。。。。。。(3分)
(2)设P点的横坐标为x(TWxW2)(注:x的范围不写不扣分)
则P、E的坐标分别为:P(x,-x-1),
E((x,.―21-3)
•••P点在E点的上方,PE=(-%-1)-(x2-2x-3)=-x2+x+2(2分)
19
・••当x=一时,PE的最大值=—。。。。。。。。。。。。。。(7分)
24
(3)存在4个这样的点F,分别是错误!未找到引用源。
F式LO)、F2(-3,0\
%(4+。0)、F4(4-V7.0)
G点纵坐标与C点相同或相反,G点在抛物线上,故
可先求出G点坐标,再根据平移的性质求点F,有以
下4种情况。
(结论“,存在”给1分,4个做对1个给1分,过程酌情给分)。。(12分)
x
图1医2
图3图4
G点
在孙域中考破考楷送总题登例
说明:1,全卷满分120分,考试时间120分钟。
2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)
1.-2的绝对值是
11
A.-2B.2C.2D.2
【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别.
【答案】B★
(一。户'K
2.计算0的结果为
b
A.bB.~bC.abD.0
【解析】本题考察代数式的乘法运算,容易,注意(一。尸=出,约分后值为“
【答案】A*
3.如图所示的几何体的左视图为
ABCD
【解析】本题考察三视图,容易,但注意错误的选项B和C.
【答案】D★
频数(人数)
4.某班组织了针对全班同学关于“你最喜欢的一项体育活动”
的问卷调查后,绘制出频数分布直方图,由图可知,下列结1512
论正确的是10b
5,
A.最喜欢篮球的人数最多
顶
羽田
足
0篮乒
乓
毛
径
球球
球
球
为
悌
相
B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍
C.全班共有50名学生
D.最喜欢田径的人数占总人数的10.%
【解析】本题考察条形统计图,容易,对相关概念要理解清楚.
【答案】C★
【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45。
方向,
否则两个图形不轴对称.
【答案】C★★
B(m+2,0)
6.在平面直角坐标系中,分别过点作工轴的垂线1和h,探究直线[前七
与双曲
_3
线"-X的关系,下列结论中错误的是
A.两直线中总有一条与双曲线相交
B.当切口时,两条直线与双曲线的交点到原点的距离相等
—2<m<0
C.当时,两条直线与双曲线的交点在轴两侧
D.当两直线与双曲线都有交点时,这两交点的最短距离是2
【解析】本题考察直线与双曲线的关系,当m=0时,%与双曲线有交点,当时,。与
m*0,m工-2、与,
双曲线有交点,当时,-和双曲线都有交点,所以力正确;当m=l时,
两交点分别是(1,3),(3,1),到原点的距离都是回,所以B正确;当时,।在雌
和(m+2,-
的左侧,।弟)'轴的右则,所以0正确;两交点分别是3m+)两
4+———
交点的距离是Vg(m+*2,当m无限大时,两交点的距离趋近于2,所以D不正确:注意
是错误的选项.
【答案】D★★★
二、填空题(本大题共6小题,每小题3分,共18分)
1
7.若分式有意义,贝炉的取值范围是
【解析】本题考察分式有意义的条件,当分母不为。时,分式有意义,所以第一1工0.
【答案】★
8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航
任务,其排水量超过6万吨,将数60000用科学记数法表示应
为.
【解析】本题考察科学记数法,把60000写成0X10》的形式,注意1MQC10
【答案】6x104★
9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,
值金十
两。牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛5头,羊2头,共值
金10两,牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x
两、>'两,依题意,可列出方程为
【解析】本题考察列二元一次方程组,抓住题中的等量关系,较为容易列出方程组.
5x+2y=10
【答案】2x+5y=8★★
10.如图,在矩形4BCD中,AD=3t将矩形48CD绕点A逆时针旋转
DE=EF
得到矩形4EFG,点8的对应点E落在CD上,且贝ij
AB的长为(第1噌)
【解析】本题考察矩形的性质和旋转的对应线段,利用勾股定理
乙。
计算月B的长.DE=EF=BC=AD=3t=90°,所以〜
【答案】AB=3戊★★
11.一元二次方程炉一4x+2=°的两根为勺,石,贝产J-4%+2%a二的值
为
【解析】本题考察一元二次方程根与系数的关系,因为算5-4%+2=0,所以
2
x1-4x1=-2,
因为算】七=2,所以原式值为2,有一定的技巧性.
【答案】2★★
12.在正方形ABCD中,月B=6,连接力Q8D,P是正方形边上或对角线上一点,若PD=2^P,
则4P的长
为
【解析】本题考察动点问题,涉及直角三角形,辅助线,勾股定理,方程思想,综合性
较强。
首先,要能判断符合条件的P点共有3个:如图1,PA=2;如图2,因为4APD
是直角三角形,PD=2PA,所以NPDA=30°,所以PA=c;如图3,设PH口,贝!|PA=V^Z
PI>2V2x,所以(6-%尸+x二=(2V2%)::,所以x=a-l,所以PA=E-V2
【答案】2,2^,V14-V2★★★
三、(本大题共5小题,每小题6分,共30分)
13.(本题共2小题,每小题3分)
(1)计算:3+l)(a-1)-(a-2)2.
【解析】原式=a2-l-(a2-4a+4)
=a2-1-a2+4a—4
=4a-5★
x-l>—+3
(2)解不等式:
nr
[解析]去分母:2x-2>%-2+6
移项,合并:x26★
14.如图,在△ABC中,AB=8,"=4,40=6,8II”8D是4BC的平分线,BD交4D于
点纥求4E的
长.
【解析】TBD是NABC的平分线,/.ZABD=ZCBD
VCD/7ABAZABD=ZD
/.ZCBD=ZD/.CD=BC=4
又「CD〃AB/.AABE^ACDE
CE_CD4_1
♦•♦AEAB一_82VCE+AE=AC=6/.AE=4★★
15.如图,在四边形48CD中,43〃CD,4B=2CD,E为力B的中点,请仅用无刻度的直尺分别
按下列
要求画图(保留作图痕迹)
(1)在图1中,画出AABD的BD边上的中线;
(2)在图1中,若BA=BD,画出aABD的AD边上的高.
图I图2
【解析】(1)如图AF是aABD的BD边上的中线;
(2)如图AH是aABD的AD边上的高.
16.今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任
梁老师决
定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参
加.
抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面
朝上,洗
匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余
的3张卡
片中随机抽取第二张,记下姓名.
(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事
件(填
“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;
,(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”
的概率.
1
【解析】(1)不可能随机
(2)共12种可能,“小惠被抽中”的概率是:
开始
小悦小惠小艳小倩
惠艳倩悦艳倩悦惠倩悦惠艳
★★
y=:(x)9
17.如图,反比例函数3c的图象与正比例函数y=2%的图象相交于
4(1,0),B两点,
点C在第四象限,CA//y轴,N4BC=90°.
(1)求文的值及点8的坐标;
(2)求心比的值.
【解析】(D丁点月(1,。)在y=2%上,・・・。=2・・・月(1,2)
k
V=-
把41,2)代入’“得k=2
:A、B两点关于原点。中心对称,
・,.8(—1,-2)★★
(2)作BH_LAC于H,设AC交x轴于点D
•;Z_ABC=90°Z,BHC=90°.・.NC=/ABH
・・・C4〃),轴,.・.BH〃入轴,・・.4OD=48H
ZC=乙4OD
tanC=tan^AOD="=二=2
・OD1
★★
四、(本大题共3小题,每小题8分,共24分)
18.4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智
慧启发,
让人滋养浩然之气。”某校响应号召,鼓励师生利用课余时间广才阅读,该校文学社为
了解学生
课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:
收集数据从•学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据
如下(单位:
min):
306081504011013014690100
60811201407081102010081
整理数据按如下分段整理样本数据并补全表格:
课外阅读时间
0<%<4040<x<8080<%<120120<%<160
x(min)
等级DCBA
人数38
分析数据补全下列表格中的统计量:
平均数中位数众数
80
得出结论
(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级
为;
(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?
(3)假设平均阅读一本课外书的时间为160分钟,请你选择一种统计量估计该校学生
每人一年
(按52周计算)平均阅读多少本课外书?
【解析】(1)
课外阅读时间
0<x<4040<x<8080<x<120120<x<160
算(min)
等级DCBA
人数3584
平均数中位数众数
808181
★
(2)84-20X400=160;•该校等级为的学生有名;★
(3)选统计量:平均数
80X524-160=26,该校学生每人一年平均阅读26本课外
书★★
19.图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固
定在门框
上,通过推动左侧活页门开关;图2是其俯视图简化示意图,已知轨道48=120所,
两扇活页
门的宽℃=°8=60刖,点B固定,当点C在AB上左右运动时,°C与°B的长度不变
(所有结果
保留小数点后一位).
⑴若/OBC=50•,求4C的长;
(2)当点0从点月向右运动60刖时,求点。在此过程中运动的路径长.
参考数据:sin50°^0.77,cos50°^0.64,tan50°^1.19,冗取3.14
o
图2
【解析】(1)如图,作OILLAB于II
V0C=0B=60ACH=BH
在RtAOBH中
BH
VCOSZOBC=°B
/.BH=OB-cos50°«=60X0.64=38.4
AAC=AB-2BH^120-2X38.4=43.2
・・・AC的长约为43.2cm.
(2)VAC=60/.BC=60V0C=0B=60
A0C=0B=BC=60
••・△OBC是等边三角形
—2nr=-x2x60x3.14
,0C弧长="。6
=62.8
工点0在此过程中运动的路径长约为62.8cm.
★★★
20.如图,在中,。为4c上一点,以。为圆心,℃长为半径作圆,与BC相切于点C,
过点除
LAOD-乙BAD
AD18。交B°的延长线于点D,且
(1)求证:48为©°的切线;
cc,tan/LABC="
(2)若BC=6.I求4。的长.
【解析】(1)作OE_LAB于点E
・・・。°切BC于点C
.,.OC±BCNACB=90°
VAD±BD/.ZD=90°
AZABD+ZBAD=90°
ZCBD4-ZB0C=90°
VZB0C=ZA0DZAOD=ZBAD
:.ZBOC=ZBAD
AZABD=ZCBD
(ZOEA=zOCB
zABD=zCBD
在aOBC和AOBE中°B=0B
AAOBC^AOBE
AOE=OCAOE是00的半径
VOE±ABAAB为。0的切线.★★★
AC_4
(2)VtanZABC=BC3,BC=6
AAC=8.T.AB=V624-8:I=10
VBE=BC=6?.AE=4
AE4
VZAOE=ZABC.-.tanZA0E=EO3/.E0=3
AA0=50C=3.•.B0=V62+3==3有
zAOD=Z.BOC
ffiAAOD和△BOC中zADOE=zBCC
A。AD
AAAODooABOC.\B0BC
5_AD
即"6,-.AD=2V5
★★★
五、(本大题共2小题,每小题9分,共18分)
21.某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该
蜜柚的成
本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每
天销售量
y(千克)与销售单价x(元/千克)之间的函数关系如图所示.
(1)求y与X的函数关系式,并写出X的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得
最大利润
的方式进行销售,能否销售完这批蜜柚?请说明理由.
【解析】(1)设y=kx+b
(10k+b=200fk=-10
则115k+b=150解得(b=300
;.y=-10x+300
,蜜柚销售不会亏本,...x、8
又y>0A-10X+300>0<30
.・.8<x<30★★★
(2)设利润为元
则w=(——8)(-10%+300)
=-10x2+380x-2400
.=-10(x-19)2x2+1210
.・.当x=19时,w最大为1210
・•・定价为19元时,利润最大,最大利润是1210元.★★★
⑶当%=19时,y=110
110X40=4400<4800
・,•不能销售完这批蜜柚.★★
LABC=60°
22.在菱形48CD中,,点P是射线8D上一动点,以4P为边向右侧作等边
点E的位置随点P的位置变化而变化.
(1)如图1,当点石在菱形月BCD内部或边上时,连接CE,BP与CE的数量关系
是,
CE与月D的位置关系是;
(2)当点石在菱形XBCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不
成立,
请说明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 1 My day PartB(教学设计)-2023-2024学年人教PEP版英语五年级下册
- 股权划转合同范本
- 12 早睡早起 第1课时 教学设计-2023-2024学年道德与法治一年级上册统编版
- 3主动拒绝烟酒与毒品 第一课时 教学设计-2024-2025学年道德与法治五年级上册统编版
- 广东律师合同范本
- 2023-2024学年天津市中小学生mixly创意编程 第14课 走8字的小车-教学设计
- 安全教育家长会演讲稿
- 10《青山处处埋忠骨》教学设计-2024-2025学年五年级下册语文统编版
- 4 平平安安回家来 第一课时 教学设计-2024-2025学年道德与法治一年级上册(统编版五四制)
- 7 散文诗二首2024-2025学年新教材七年级上册语文新教学设计(统编版2024)
- 骆驼养殖开发项目可行性报告设计方案
- 物理-河南省郑州市2024-2025学年高二上学期期末考试试题和答案
- 《幼儿教育政策与法规》教案-单元3 幼儿园的开办与管理
- 南通市2025届高三第一次调研测试(一模)生物试卷(含答案 )
- 新时代中国特色社会主义理论与实践2024版研究生教材课件全集6章
- 《由宋城集团的成功》课件
- (2024)湖北省公务员考试《行测》真题及答案解析
- 信息经济学 课件(1至6章)
- 反恐防暴器械与战术应用讲解
- 浙江省2024年中考语文真题试卷(含答案)
- 海迈工程量清单计价软件使用说明书-20220226100603
评论
0/150
提交评论