重庆对外经贸学院《U设计》2023-2024学年第一学期期末试卷_第1页
重庆对外经贸学院《U设计》2023-2024学年第一学期期末试卷_第2页
重庆对外经贸学院《U设计》2023-2024学年第一学期期末试卷_第3页
重庆对外经贸学院《U设计》2023-2024学年第一学期期末试卷_第4页
重庆对外经贸学院《U设计》2023-2024学年第一学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第2页,共2页重庆对外经贸学院《U设计》

2023-2024学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、图像分类是计算机视觉中的常见任务之一。对于图像分类模型的训练,以下说法错误的是()A.需要大量有标注的图像数据来学习不同类别的特征B.卷积神经网络(CNN)在图像分类任务中表现出色C.模型的训练过程是不断调整参数以最小化预测误差的过程D.图像分类模型一旦训练完成,就无法再对新的类别进行学习和分类2、在计算机视觉的图像配准任务中,需要将不同时间或视角拍摄的图像进行对齐。假设要将两张拍摄角度不同的卫星图像进行精确配准,图像中存在地形变化和云层遮挡。以下哪种图像配准方法在这种困难情况下能够取得较好的效果?()A.基于特征的配准B.基于灰度的配准C.基于变换模型的配准D.基于深度学习的配准3、计算机视觉在安防监控领域有着广泛的应用。假设一个商场需要通过监控摄像头进行人员异常行为检测。以下关于安防监控中的计算机视觉的描述,哪一项是不正确的?()A.可以实时监测人群的流动情况,发现拥堵和异常聚集B.能够识别人员的打斗、摔倒等异常行为,并及时发出警报C.计算机视觉系统能够完全取代人工监控,不需要人类保安的参与D.可以与其他安防设备(如门禁系统)联动,提高安防水平4、在计算机视觉中,图像生成是创建新的图像内容。以下关于图像生成的说法,错误的是()A.可以通过生成对抗网络(GAN)、变分自编码器(VAE)等模型进行图像生成B.图像生成可以用于艺术创作、数据增强和虚拟场景构建等任务C.生成的图像质量和真实性在不断提高,但仍然存在一些缺陷和不完美之处D.图像生成可以完全根据用户的任意想象生成任何内容,不受任何限制5、计算机视觉中的光流估计用于计算图像中像素的运动信息。假设要对一段视频中的物体运动进行分析,以下关于光流估计的描述,正确的是:()A.稀疏光流估计只计算图像中部分特征点的运动,无法反映整体的运动趋势B.稠密光流估计能够得到图像中每个像素的运动向量,但计算复杂度较高C.光流估计的结果不受光照变化和噪声的影响,具有很高的准确性D.光流估计只能用于分析匀速直线运动的物体,对于复杂的运动模式无法处理6、计算机视觉中的光流计算用于估计图像中像素的运动。假设要对一个快速运动的物体进行光流估计,同时场景中存在光照变化和噪声干扰。在这种情况下,以下哪种光流计算方法能够提供更准确和稳定的结果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法7、计算机视觉中的行人重识别是指在不同摄像头拍摄的图像中识别出同一个行人。假设要在一个大型商场的监控系统中实现行人重识别,以下关于行人重识别方法的描述,正确的是:()A.基于颜色和纹理特征的方法对行人的姿态和光照变化不敏感,识别准确率高B.深度学习中的度量学习方法能够学习到行人的判别性特征,但容易受到背景干扰C.行人重识别系统只需要关注行人的外观特征,不需要考虑行人的行为特征D.行人重识别在不同场景和摄像头视角下的性能始终保持稳定,不受影响8、在一个基于计算机视觉的机器人导航系统中,需要根据环境图像来规划机器人的路径。以下哪种视觉导航方法可能更适合复杂动态环境?()A.基于地图的导航B.基于视觉里程计的导航C.基于深度学习的端到端导航D.以上都是9、当进行图像的去雾处理时,假设要去除图像中由于雾气导致的模糊和低对比度。以下哪种方法可能更有效?()A.基于物理模型的去雾方法,估计大气光和透射率B.对图像进行简单的对比度增强C.不进行去雾处理,保留有雾的效果D.随机调整图像的亮度和饱和度10、计算机视觉中的图像超分辨率技术用于提高图像的分辨率。假设要将一张低分辨率的图像恢复成高分辨率图像,以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的图像超分辨率方法能够生成清晰逼真的高分辨率图像B.深度学习中的生成对抗网络(GAN)在图像超分辨率任务中无法发挥作用C.图像超分辨率的效果不受原始低分辨率图像的质量和内容的限制D.结合先验知识和深度学习的方法可以改善图像超分辨率的效果11、计算机视觉在无人驾驶中的应用需要应对各种复杂的环境和情况。假设无人驾驶汽车要在恶劣天气下行驶,以下关于计算机视觉在无人驾驶中的挑战的描述,哪一项是不正确的?()A.恶劣天气会影响图像的质量和清晰度,增加目标检测和识别的难度B.计算机视觉系统需要与其他传感器(如雷达和超声波传感器)融合,以提高在恶劣天气下的感知能力C.深度学习模型在恶劣天气条件下的性能会显著下降,无法正常工作D.针对恶劣天气,可以通过数据增强和模型优化等方法提高计算机视觉系统的鲁棒性12、在计算机视觉的姿态估计任务中,需要确定物体在三维空间中的方向和位置。假设要估计一个机器人手臂的姿态,以实现精确的控制和操作。以下哪种姿态估计方法在处理这种机械结构时准确性更高?()A.基于模型的姿态估计B.基于深度学习的姿态估计C.基于视觉惯性里程计的姿态估计D.基于几何约束的姿态估计13、在计算机视觉的图像超分辨率重建中,提高低分辨率图像的清晰度。假设要将一张模糊的图像重建为清晰的高分辨率图像,以下关于图像超分辨率重建方法的描述,哪一项是不正确的?()A.基于插值的方法通过在像素之间插入新的值来增加图像的分辨率,但可能会导致图像模糊B.基于深度学习的方法能够学习低分辨率图像和高分辨率图像之间的映射关系,重建出更清晰的图像C.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制D.为了获得更好的重建效果,可以结合多种超分辨率重建方法或使用先验知识14、在计算机视觉的图像分割任务中,假设要对细胞图像进行精细分割。以下关于模型选择的考虑因素,哪一项是不准确的?()A.模型对细胞边界的捕捉能力B.模型在小样本数据上的泛化能力C.模型的训练时间和计算资源需求D.模型的知名度和在学术圈的引用次数15、在计算机视觉的视频压缩中,为了在保证视觉质量的同时减少数据量,以下哪种技术可能被广泛应用?()A.运动估计和补偿B.图像分割C.特征点检测D.边缘检测二、简答题(本大题共3个小题,共15分)1、(本题5分)说明计算机视觉在环境监测中的作用。2、(本题5分)说明计算机视觉在文化遗产数字化中的作用。3、(本题5分)解释计算机视觉在环境保护中的用途。三、应用题(本大题共5个小题,共25分)1、(本题5分)使用目标跟踪算法,跟踪马戏表演中空中飞人的轨迹。2、(本题5分)在物流配送中,使用计算机视觉识别包裹的目的地和收件人信息。3、(本题5分)在物流仓储中,使用计算机视觉优化货物的存储布局和拣选路径。4、(本题5分)基于深度学习,实现对羽毛球比赛中发球是否违规的检测。5、(本题5分)通过图像分割技术,将卫星图像中的沙漠和绿洲区域进行划分。四、分析题(本大题共3个小题,共30分)1、(本题10分)分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论