2025年人教版PEP一年级语文上册月考试卷含答案_第1页
2025年人教版PEP一年级语文上册月考试卷含答案_第2页
2025年人教版PEP一年级语文上册月考试卷含答案_第3页
2025年人教版PEP一年级语文上册月考试卷含答案_第4页
2025年人教版PEP一年级语文上册月考试卷含答案_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年人教版PEP一年级语文上册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共7题,共14分)1、下面的字音,由声母t和韵母u拼读而成的是()。A.木B.水C.火D.土2、看图选音()。

A.yúB.yǘC.yǔD.yǜ3、选择占格完全相同的一项是_____。

yiwuücchbjgA.ybzhB.wucC.cchwüD.ygj4、下列字的笔画最多的是()。A.白B.云C.土D.子5、在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.806、下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆7、如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=k2x

(k2≠0)相交于A;B两点,已知点A的坐标为(1,2),则点B的坐标为()

A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)评卷人得分二、填空题(共9题,共18分)8、读拼音,写汉字。xìnfēnɡsònɡ____________9、我会读,还会写。sūnhúlúbǎo____悟空________莲灯10、看汉字,写拼音。____________海狼穿11、我会读;还会写。

zhōngyúcǎocóngfādǒu

____________12、一字组多词。

让________

服________13、比一比;在组词。

键____爸____

健____爷____14、”力“共____画,”牙“共____画。15、束的笔画顺序是:____16、我会写出下面音节的韵母和声母。

写韵母:mǎ____pī____nú____lā____

写声母:ní____tǎ____lǜ____dē____评卷人得分三、解答题(共5题,共10分)17、如图;在△ABC中,∠A>∠B.

(1)作边AB的垂直平分线DE;与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);

(2)在(1)的条件下;连接AE,若∠B=50°,求∠AEC的度数.

18、如图所示;已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.

(1)求证:AD⊥BF;

(2)若BF=BC;求∠ADC的度数.

19、如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1;0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.

(1)求抛物线y=﹣x2+ax+b的解析式;

(2)当点P是线段BC的中点时;求点P的坐标;

(3)在(2)的条件下;求sin∠OCB的值.

20、某校为了解九年级学生的体重情况;随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:

体重频数分布表。

。组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016

(1)填空:①m=______(直接写出结果);

②在扇形统计图中;C组所在扇形的圆心角的度数等于______度;

(2)如果该校九年级有1000名学生;请估算九年级体重低于60千克的学生大约有多少人?

21、如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(23

;0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.

(1)填空:点B的坐标为(23

;2);

(2)是否存在这样的点D;使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;

(3)①求证:DEDB=33

②设AD=x;矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

评卷人得分四、问答题(共2题,共16分)22、请写出《西游记》中的任意五个人物。23、读课文《王二小》;给句子排排队。

①八路军从山上冲下来;消灭了敌人。

②有一天;他在山坡上放牛,敌人叫他带路。

③王二小常常一边放牛;一边帮助八路军放哨。

④他把敌人带进了八路军的埋伏圈。

⑤小英雄王二小被敌人杀害了。评卷人得分五、默写(共3题,共27分)24、默写古诗《静夜思》。

静夜思。

____;

____。

____;

____。25、默写古诗;并加上标点。

《春晓》

____

____

____

____26、按课文《悯农》内容默写。

①春种一粒粟,____。四海无闲田,____。参考答案一、选择题(共7题,共14分)1、D【分析】【分析】木读mù,水读shuǐ,火读huǒ,土读tǔ,故选D。

【点评】本题考查识字与音节拼读的掌握情况。2、C【分析】【分析】雨的音节;ü上去点,是个三声声调,故选C

【点评】本题考查声调掌握情况,yu的外形特征。3、B【分析】​【分析】字母wuc站四线格的中间格;iüch占一二格,yg占二三格,j占三个格。

【点评】本题考查字母占格位置的练习。4、A【分析】【分析】分别数一数四个字的笔画即可解答。

【点评】本题考查正确书写生字的笔顺。5、B【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解析】解:数据90出现了两次;次数最多,所以这组数据的众数是90.

故选:B.6、D【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解析】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.

故选:D.7、A【分析】反比例函数的图象是中心对称图形,则它与经过原点的直线的两个交点一定关于原点对称.【解析】解:∵点A与B关于原点对称;

∴B点的坐标为(﹣1;﹣2).

故选:A.二、填空题(共9题,共18分)8、信封送【分析】【分析】考查学生对汉字的掌握;应注意正确标调。信封,装信件的袋子。送,送给。

【点评】本题考查学生对拼音的熟悉程度,学生应该掌握。9、孙葫芦宝【分析】【分析】考查学生对拼音的掌握。孙悟空;石猴,协助唐僧西天取经。葫芦娃,动画片中的人物。宝莲灯,传说中的一个神物。

【点评】考查学生对拼音的熟练和掌握,学生应掌握。10、hǎilánɡchuán【分析】【分析】这类题目是主要考查了学生对拼音的掌握;海;大海。狼,狼群。穿,穿戴。

【点评】考查学生对拼音的掌握,学生要学会书写。11、终于草丛发抖【分析】【分析】考查学生对拼音的掌握。终于;表示结果。草丛,草束丛生的地方。发抖,浑身抖动。

【点评】考查学生对拼音的熟悉和掌握,学生应掌握。12、让开忍让衣服服装【分析】【分析】考查学生对生字组词的掌握。让开;不挡路。忍让,性格隐忍。衣服,服饰。服装,衣服的书面语。

【点评】考查学生对生字组词的掌握和理解。13、键盘爸爸健康爷爷【分析】【分析】键盘指的是电脑上用来打字的键盘;健康则指的是身体健康,不生病的含义,两者的共同部分为“建”;爸爸;爷爷都是一种称谓,两者的共同部分是“父”。

【点评】通过对相似字进行比较,能够提升学生对相似字的掌握能力,进而提升对汉字的使用能力,提升语言文字技巧。14、24【分析】【分析】考查学生对生字笔画的掌握。力共4画;牙共4画。

【点评】考查学生对生字笔画的掌握,学生要会辨认。15、横、竖、横折、横、竖、撇、捺【分析】【分析】这类题目是考查学生对字形的掌握。束的笔画顺序是:横;竖、横折、横、竖、撇、捺。

【点评】考查学生对字形的掌握,学生应掌握生字的笔画顺序。16、ǎīúāntld【分析】【分析】mǎ的韵母是ǎ;pī的韵母是ī,nú的韵母是ú,lā的韵母是ā;ní的声母是n,tǎ的声母是t,lǜ的声母是l,dē的声母是d

【点评】本题考查声母韵母的熟练掌握情况。三、解答题(共5题,共10分)17、略

【分析】(1)根据题意作出图形即可;

(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解析】解:(1)如图所示;

(2)∵DE是AB的垂直平分线;

∴AE=BE;

∴∠EAB=∠B=50°;

∴∠AEC=∠EAB+∠B=100°.

18、略

【分析】(1)连结DB;DF.根据菱形四边相等得出AB=AD=FA;再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;

(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=12

CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解析】(1)证明:如图;连结DB;DF.

∵四边形ABCD;ADEF都是菱形;

∴AB=BC=CD=DA;AD=DE=EF=FA.

在△BAD与△FAD中;

AB=AF∠BAD=∠FADAD=AD

∴△BAD≌△FAD;

∴DB=DF;

∴D在线段BF的垂直平分线上;

∵AB=AF;

∴A在线段BF的垂直平分线上;

∴AD是线段BF的垂直平分线;

∴AD⊥BF;

解法二:∵四边形ABCD;ADEF都是菱形;

∴AB=BC=CD=DA;AD=DE=EF=FA.

∴AB=AF;∵∠BAD=∠FAD;

∴AD⊥BF(等腰三角形三线合一);

(2)如图;设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形;

∴DG=BH=12

BF.

∵BF=BC;BC=CD;

∴DG=12

CD.

在直角△CDG中,∵∠CGD=90°,DG=12

CD;

∴∠C=30°;

∵BC∥AD;

∴∠ADC=180°﹣∠C=150°.

19、略

【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;

(2)由C点横坐标为0可得P点横坐标;将P点横坐标代入(1)中抛物线解析式,易得P点坐标;

(3)由P点的坐标可得C点坐标,由B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=OBBC

可得结果.【解析】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得;

0=−12+a+b0=−32+3a+b

解得,a=4,b=﹣3;

∴抛物线的解析式为:y=﹣x2+4x﹣3;

(2)∵点C在y轴上;

所以C点横坐标x=0;

∵点P是线段BC的中点;

∴点P横坐标xP=0+32=32

∵点P在抛物线y=﹣x2+4x﹣3上;

∴yP=−(32)2+4×32−

3=34

∴点P的坐标为(32

,34

);

(3)∵点P的坐标为(32

,34

);点P是线段BC的中点;

∴点C的纵坐标为2×34−

0=32

∴点C的坐标为(0,32

);

∴BC=(32)2+32=352

∴sin∠OCB=OBBC=3352=255

.20、略

【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;

(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解析】解:(1)①调查的人数为:40÷20%=200(人);

∴m=200﹣12﹣80﹣40﹣16=52;

②C组所在扇形的圆心角的度数为80200×

360°=144°;

故答案为:52;144;

(2)九年级体重低于60千克的学生大约有12+52+80200×

1000=720(人).21、略

【分析】(1)求出AB;BC的长即可解决问题;

(2)存在.先推出∠ACO=30°;∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,∠DCE=∠EDC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;

(3)①先表示出DN;BM,再判断出△BMD∽△DNE,即可得出结论;

②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解析】解:(1)∵四边形AOCB是矩形;

∴BC=OA=2,OC=AB=23

;∠BCO=∠BAO=90°;

∴B(23

;2).

故答案为(23

;2).

(2)存在.理由如下:

∵OA=2,OC=23

∵tan∠ACO=AOOC=33

∴∠ACO=30°;∠ACB=60°

①如图1中;当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC;

∴∠DCE=∠EDC=30°;

∴∠DBC=∠BCD=60°;

∴△DBC是等边三角形;

∴DC=BC=2;

在Rt△AOC中;∵∠ACO=30°,OA=2;

∴AC=2AO=4;

∴AD=AC﹣CD=4﹣2=2.

∴当AD=2时;△DEC是等腰三角形.

②如图2中;当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°;

∴∠ABD=∠ADB=75°;

∴AB=AD=23

综上所述,满足条件的AD的值为2或23

(3)①如图1;

过点D作MN⊥AB交AB于M;交OC于N;

∵A(0,2)和C(23

;0);

∴直线AC的解析式为y=−33

x+2;

设D(a,−33

a+2);

∴DN=−33

a+2,BM=23−

a

∵∠BDE=90°;

∴∠BDM+∠NDE=90°;∠BDM+∠DBM=90°;

∴∠DBM=∠EDN;∵∠BMD=∠DNE=90°;

∴△BMD∽△DNE;

∴DEBD=DNBM=−33a+223−a=33

②如图2中;作DH⊥AB于H.

在Rt△ADH中;∵AD=x,∠DAH=∠ACO=30°;

∴DH=12

AD=12

x,AH=AD2−DH2=32

x;

∴BH=23−32

x;

在Rt△BDH中,BD=BH2+DH2=(12x)2+(23−32x)2

∴DE=33

BD=33

•(12x)2+(23−32x)2

∴矩形BDEF的面积为y=33

[(12x)2+(23−32x)2

]2=33

(x2﹣6x+12);

即y=33

x2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论