版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华东师大新版九年级下册数学《第26章二次函数》单元测试卷一.选择题1.下列函数关系式中,是二次函数的是()A.y=x3﹣2x2﹣1 B.y=x2 C. D.y=x+12.下列各式中,y是x的二次函数的是()A. B.y=2x+1 C.y=x2+x﹣2 D.y2=x2+3x3.下列函数中是二次函数的是()A.y=﹣2x B.y=﹣ C.y=1﹣3x2 D.y=x+34.在平面直角坐标系xOy中,点A,点B的位置如图所示,抛物线y=ax2﹣2ax经过A,B,则下列说法不正确的是()A.抛物线的开口向上 B.抛物线的对称轴是直线x=1 C.点B在抛物线对称轴的左侧 D.抛物线的顶点在第四象限5.已知关于x的方程只有一个实数根,则实数a的取值范围是()A.a>0 B.a<0 C.a≠0 D.a为一切实数6.函数y=ax2+bx+c和y=ax+b在同一坐标系中的图象大致是()A. B. C. D.7.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax﹣bc的图象大致是()A. B. C. D.8.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是直线x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③8a+c>0;④若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2,其中正确的有()A.1个 B.2个 C.3个 D.4个9.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=(200﹣5x)(40﹣20+x) B.y=(200+5x)(40﹣20﹣x) C.y=200(40﹣20﹣x) D.y=200﹣5x10.对于二次函数y=﹣2(x+3)2的图象,下列说法正确的是()A.开口向上 B.对称轴是直线x=﹣3 C.当x>﹣4时,y随x的增大而减小 D.顶点坐标为(﹣2,﹣3)二.填空题11.若是二次函数,则m的值是.12.若y=(a+3)x|a|﹣1﹣3x+2是二次函数,则a的值为.13.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.14.正方形的边长是3,若边长增加x,则面积增加y的函数关系式为.15.小颖同学想用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x…﹣2﹣1012…y…112﹣125…由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x=.16.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.17.二次函数y=x2﹣3的顶点坐标是.18.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是.19.用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列出了如下表格:x…1234…y=ax2+bx+c…0﹣103…那么该二次函数在x=0时,y=.20.二次函数y=ax2+bx+c的图象过点(3,1),(6,﹣5),若当3<x<6时,y随着x的增大而减小,则实数a的取值范围是.三.解答题21.已知函数y=(m﹣1)+4x﹣5是二次函数.(1)求m的值;(2)写出这个二次函数图象的对称轴和顶点坐标.22.已知函数y=(m2+2m)x2+mx+m+1,(1)当m为何值时,此函数是一次函数?(2)当m为何值时,此函数是二次函数?23.在平面直角坐标系中,画出函数y=(x﹣1)2的图象.24.已知函数y=(m2+m).(1)当函数是二次函数时,求m的值;;(2)当函数是一次函数时,求m的值..25.已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:x…﹣10134…y…800…(1)抛物线的对称轴是.点A(,),B(,);(2)求二次函数y=ax2+bx+3的解析式;(3)已知点M(m,n)在抛物线y=ax2+bx+3上,设△BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?26.小明利用函数与不等式的关系,对形如(x﹣x1)(x﹣x2)…(x﹣xn)>0(n为正整数)的不等式的解法进行了探究.(1)下面是小明的探究过程,请补充完整:①对于不等式x﹣3>0,观察函数y=x﹣3的图象可以得到如表格:x的范围x>3x<3y的符号+﹣由表格可知不等式x﹣3>0的解集为x>3.②对于不等式(x﹣3)(x﹣1)>0,观察函数y=(x﹣3)(x﹣1)的图象可以得到如表表格:x的范围x>31<x<3x<1y的符号+﹣+由表格可知不等式(x﹣3)(x﹣1)>0的解集为.③对于不等式(x﹣3)(x﹣1)(x+1)>0,请根据已描出的点画出函数y=(x﹣3)(x﹣1)(x+1)的图象;观察函数y=(x﹣3)(x﹣1)(x+1)的图象补全下面的表格:x的范围x>31<x<3﹣1<x<1x<﹣1y的符号+﹣由表格可知不等式(x﹣3)(x﹣1)(x+1)>0的解集为.……小明将上述探究过程总结如下:对于解形如(x﹣x1)(x﹣x2)……(x﹣xn)>0(n为正整数)的不等式,先将x1,x2…,xn按从大到小的顺序排列,再划分x的范围,然后通过列表格的办法,可以发现表格中y的符号呈现一定的规律,利用这个规律可以求这样的不等式的解集.(2)请你参考小明的方法,解决下列问题:①不等式(x﹣6)(x﹣4)(x﹣2)(x+2)>0的解集为.②不等式(x﹣9)(x﹣8)(x﹣7)2>0的解集为.27.某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,假设每个降价x(元),每天销售y(个),每天获得利润W(元).(1)写出y与x的函数关系式;(2)求出W与x的函数关系式(不必写出x的取值范围)
参考答案与试题解析一.选择题1.解:A、自变量的最高次数是3,错误;B、正确;属于二次函数的一般形式;C、原函数可化为:y=2x﹣2﹣3,自变量的最高次数是﹣2,错误;D、自变量的最高次数是1,错误.故选:B.2.解:A、,分母中含有自变量,不是二次函数,错误;B、y=2x+1,是一次函数,错误;C、y=x2+x﹣2,是二次函数,正确;D、y2=x2+3x,不是函数关系式,错误.故选C.3.解:A、y=﹣2x,是正比例函数,不合题意;B、y=﹣,是反比例函数,不合题意;C、y=1﹣3x2,是二次函数,符合题意;D、y=x+3,是一次函数,不合题意;故选:C.4.解:∵y=ax2﹣2ax,∴x=0时,y=0,∴图象经过原点,又∵对称轴为直线x==1,∴抛物线开口向上,点B在对称轴的右侧,顶点在第四象限.即A、B、D正确,C错误.故选:C.5.解:∵方程只有一个实数根,∴函数y=和函数y=x2﹣2x+3只有一个交点,∵函数y=x2﹣2x+3=(x﹣1)2+2,开口向上,对称轴x=1,顶点为(1,2),抛物线交y轴的正半轴,∴反比例函数y=应该在一或二象限,∴a≠0,故选:C.6.解:B、C中,两函数图象反映的a的符号不相符,错误;当a>0,b>0时,直线过一、二、三象限,抛物线开口向上且对称轴在y轴左侧,A正确;当a<0,b<0时,直线过二、三、四象限,抛物线开口向下,对称轴在y轴左侧,D错误.故选:A.7.解:由二次函数y=ax2+bx+c的图象可得,a>0,b>0,c<0,∴﹣bc>0,∴一次函数y=ax﹣bc的图象经过第一、二、三象限,故选:A.8.解:①由对称轴可知:<0,∴ab>0,由抛物线与y轴的交点可知:c<0,∴abc<0,故①正确;②由图象可知:=﹣1,∴b=2a,∴2a﹣b=0,故②正确;③(﹣3,0)关于直线x=﹣1的对称点为(1,0),∴令x=1,y=a+b+c=0,∴c=﹣3a,∵a>0,∴8a+c=5a>0,故④正确;④(﹣5,y1)关于直线x=﹣1的对称点(3,y1),∴若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2,故④正确;故选:D.9.解:∵每涨价1元,每星期要少卖出5件,每件涨价x元,∴销售每件的利润为(40﹣20+x)元,每星期的销售量为(200﹣5x)件,∴每星期售出商品的利润y=(200﹣5x)(40﹣20+x).故选:A.10.解:由y=﹣2(x+3)2得抛物线开口向下,对称轴为直线x=﹣3,顶点坐标为(﹣3,0),x≤﹣3时y随x增大而增大,x>﹣3时y随x增大而减小.故选:B.二.填空题11.解:由二次函数的定义可知:m2+2m﹣1=2,解得:m=﹣3或1,又m﹣1≠0,m≠1,∴m=﹣3.故答案为:﹣3.12.解:当|a|﹣1=2且a+3≠0时,为二次函数,∴a=﹣3(舍去),a=3.故答案为3.13.解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.14.解:新正方形的边长是(x+3),则y=(x+3)2﹣32=x2+6x.15.解:根据表格给出的各点坐标可得出,该函数的对称轴为直线x=0,求得函数解析式为y=3x2﹣1,则x=2与x=﹣2时应取值相同.故这个算错的y值所对应的x=2.16.解:已知抛物线与x轴的一个交点是(﹣1,0),对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3.17.解:二次函数y=x2﹣3的顶点坐标为(0,﹣3),故答案为(0,﹣3).18.解:∵a=﹣1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故答案为:x<1.19.解:由上表可知函数图象经过点(1,0)和点(3,0),∴对称轴为x=2,∴当x=4时的函数值等于当x=0时的函数值,∵当x=4时,y=3,∴当x=0时,y=3.故答案是:3.20.解:将点(3,1),(6,﹣5),代入二次函数表达式得:,解得:,当a>0时,则函数对称轴在x=6的右侧,即x=﹣≥6,即≥6,解得:a≤,同理当a<0时,则函数对称轴在x=3的左侧,即x=﹣≤3,即≤3,解得:a≥﹣,故答案为:﹣≤a≤且a≠0.三.解答题21.解:(1)由y=(m﹣1)+4x﹣5是二次函数,得m2+1=2且m﹣1≠0.解得m=﹣1;(2)当m=﹣1时,二次函数为y=﹣2x2+4x﹣5,a=﹣2,b=4,c=﹣5,对称轴为直线x=﹣=1,顶点坐标为(1,﹣3).22.解:(1)∵函数y=(m2+2m)x2+mx+m+1,是一次函数,∴m2+2m=0,m≠0,解得:m=﹣2;(2))∵函数y=(m2+2m)x2+mx+m+1,是二次函数,∴m2+2m≠0,解得:m≠﹣2且m≠0.23.解:函数y=(x﹣1)2,列表:描点、连线,.24.解:(1)依题意,得m2﹣2m+2=2,解得m=2或m=0;又因m2+m≠0,解得m≠0或m≠﹣1;因此m=2.(2)依题意,得m2﹣2m+2=1解得m=1;又因m2+m≠0,解得m≠0或m≠﹣1;因此m=1.25.解:(1)根据当x=1和3时,y=0,得出抛物线的对称轴是:直线x=2,∵抛物线y=ax2+bx+3与y轴的交点为A,∴x=0时,y=3,则点A(0,3),故B(4,3);(2)图象过(1,0),(3,0),设抛物线为y=a(x﹣1)(x﹣3),把(0,3)代入可得:3=a(0﹣1)(0﹣3),解得:a=1,故二次函数y=ax2+bx+3的解析式为:y=(x﹣1)(x﹣3)=x2﹣4x+3;(3)如图1,连接AB,∵AB∥x轴,AB=4,当0<m<4时,点M到AB的距离为3﹣n,∴S△ABM=(3﹣n)×4=6﹣2n,又∵n=m2﹣4m+3,S1=﹣2m2+8m,∴当m<0或m>4时,点M到直线AB的距离为n﹣3,S2=×4(n﹣3)=2n﹣6,而n=m2﹣4m+3,S2=2m2﹣8m,S=,故函数图象如图2(m轴上方部分)所示,S不存在最大值,从图象可知:当m<0或m>4时,S的值可以无限大.26.解:(1)②由表格可知不等式(x﹣3)(x﹣1)>0的解集为x>3或x<1,故答案为:x>3或x<1;③图象如右图所示,当﹣1<x<1时,(x﹣3)(x﹣1)(x+1)>0,当x<﹣1时,(x﹣3)(x﹣1)(x+1)<0,由表格可知不等式(x﹣3)(x﹣1)(x+1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁政法职业学院《建筑模型制作实践》2023-2024学年第一学期期末试卷
- 兰州交通大学《影视剧创作》2023-2024学年第一学期期末试卷
- 江西经济管理职业学院《中医经典伤寒论》2023-2024学年第一学期期末试卷
- 吉首大学《痕迹信息系统应用》2023-2024学年第一学期期末试卷
- 湖南高尔夫旅游职业学院《建筑材料与构造1》2023-2024学年第一学期期末试卷
- 黑龙江外国语学院《系统辨识及自适应控制》2023-2024学年第一学期期末试卷
- 重庆建筑科技职业学院《光纤通信系统》2023-2024学年第一学期期末试卷
- 中央音乐学院《高级统计分析》2023-2024学年第一学期期末试卷
- 小学五年专项发展规划(教学工作)
- 长春工业大学人文信息学院《小学体育教师基本功》2023-2024学年第一学期期末试卷
- 产品质量反馈、回复单
- GB/T 7424.2-2002光缆总规范第2部分:光缆基本试验方法
- 《材料分析测试技术》全套教学课件
- 人教版8年级上英语各单元语法课件大全
- (完整版)形式发票模版(国际件通用)
- 武汉东湖宾馆建设项目委托代建合同
- 安徽大学大学生素质教育学分认定办法
- 高度限位装置类型及原理
- 中文版gcs electrospeed ii manual apri rev8v00印刷稿修改版
- 新生儿预防接种护理质量考核标准
- 除氧器出水溶解氧不合格的原因有哪些
评论
0/150
提交评论