版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
/福建省南平市吴屯中学2020年高三数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在(x+a)5(其中a≠0)的展开式中,x2的系数与x3的系数相同,则a的值为()A.﹣2 B.﹣1 C.1 D.2参考答案:C【考点】二项式系数的性质.【分析】通过二项式定理,写出(x+a)5(其中a≠0)的展开式中通项Tk+1=x5﹣kak,利用x2的系数与x3的系数相同可得到关于a的方程,进而计算可得结论.【解答】解:在(x+a)5(其中a≠0)的展开式中,通项Tk+1=x5﹣kak,∵x2的系数与x3的系数相同,∴a3=a2,又∵a≠0,∴a=1,故选:C.2.一个几何体的三视图如图所示,则该几何体的表面积为(
)A.
B.
C.
D.12参考答案:C3.已知是两个不同的平面,是一条直线,给出下列说法:①若,,则;②若,,则;③若,,则;④若,,则.其中说法正确的个数为(
)A.3
B.2
C.1
D.0参考答案:C①若,,则或,不正确;②若,,则或,不正确;③若,,则,正确;④若,,则或或与相交且与不垂直,不正确,故选C.
4.一只受伤的丹顶鹤在如图所示(直角梯形)的草原上飞过,其中,它可能随机在草原上任何一处(点),若落在扇形沼泽区域ADE以外丹顶鹤能生还,则该丹顶鹤生还的概率是(
)A.
B.
C.
D.参考答案:
过点作于点,在中,易知,梯形的面积,扇形的面积,则丹顶鹤生还的概率,故选5.已知椭圆与双曲线有公共焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则(
)A. B. C. D.参考答案:C【分析】结合椭圆和双曲线有公共的焦点可得,再利用恰好将线段三等分,可求得.【详解】因为椭圆与双曲线有公共焦点,所以;双曲线的一条渐近线为,设渐近线与椭圆的交点为C,D,如图,设,代入椭圆可得①因为恰好将线段三等分,所以,即有②联立①②可得,结合可得,故选C.【点睛】本题主要考查圆、椭圆和双曲线的综合,寻求题目中的等量关系是求解关键,侧重考查数学运算的核心素养.6.将正方体(如图(a)所示)截去两个三棱锥,得到图(b)所示的几何体,则该几何体的侧视图为(
). A. B. C. D.参考答案:B明显选择.7.如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为()A.3:1 B.2:1 C.1:1 D.1:2参考答案:C【考点】简单空间图形的三视图;由三视图求面积、体积.【专题】计算题;数形结合;等体积法;立体几何.【分析】V=V半球﹣V圆锥,由三视图可得球与圆锥内的长度.【解答】解:球的半径为r,圆锥的半径为r,高为r;V圆锥=?πr3,V半球=×πr3=πr3,∴V=V半球﹣V圆锥=πr3,∴剩余部分与挖去部分的体积之比为1:1,故选:C【点评】本题通过三视图考查几何体体积的运算,关键是掌握体积公式,属于基础题.8.若点为圆的弦的中点,则弦所在直线方程为().
.
.
.参考答案:D9.设则“且”是“”的(
)A.充分而不必要条件
B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件参考答案:A略10.设函数f(x)在定义域(0,+∞)上是单调函数,且,f[f(x)-ex+x]=e.若不等式f(x)+f′(x)≥ax对x∈(0,+∞)恒成立,则a的取值范围是A.(-∞,e-2]B.(-∞,e-1]C.(-∞,2e-3]D.(-∞,2e-1]参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则MN中元素的个数为(
)A.2
B.
3
C.
5
D.
7参考答案:B12.给出如下四个结论:①已知集合{a,b,c}={1,2,3},且下列三个关系:①a≠3;②b=3;③c≠1有且只有一个正确,则3a+2b+c等于14;②?a∈R+,使的f(x)=﹣a有三个零点;③设直线回归方程为=3﹣2x,则变量x增加一个单位时,y平均减少2个单位;④若命题p:?x∈R.ex>x+1,则¬p为真命题.以上四个结论正确的是
.(把你认为正确的结论都填上)参考答案:③④考点:命题的真假判断与应用.专题:阅读型;概率与统计;集合;简易逻辑.分析:对三个关系一一判断,结合集合中元素的性质,计算即可判断①;考虑抛物线和指数函数的图象的交点最多有2个交点,即可判断②;运用类似一次函数的单调性,即可判断③;取x=0,即可判断p假,进而判断④.解答: 解:对于①,已知集合{a,b,c}={1,2,3},且下列三个关系:①a≠3;②b=3;③c≠1有且只有一个正确,若①正确,则c=1,a=2,b=2不成立,若②正确,则b=3,c=1,a=3不成立,若③正确,则a=3,b=1,c=2,即有3a+2b+c=13,则①错误;对于②,?a∈R+,f(x)=﹣a,令f(x)=0则有﹣x2﹣x+1=aex,由于y=﹣x2﹣x+1为开口向下的抛物线,y=aex为下凹的指数函数图象,它们最多有2个交点,则②错误;对于③,设直线回归方程为=3﹣2x,由一次函数的单调性,可得变量x增加一个单位时,y平均减少2个单位,则③正确;对于④,若x=0,则ex=x+1=1,即有p为假命题,则¬p为真命题,则④正确.故答案为:③④.点评:本题考查集合中元素的性质和函数的零点的个数,同时考查复合命题的真假和线性回归方程的特点,运用函数方程的转化思想和函数的性质是解题的关键.13._________.参考答案:[0,4)略14.若f(x)=x2+ax+b(a,b∈R),x∈[﹣1,1],且|f(x)|的最大值为,则4a+3b=.参考答案:﹣
【考点】二次函数的性质.【分析】根据x的范围以及函数的最大值得到关于a,b的不等式组,求出a,b的值即可.【解答】解:若|f(x)|的最大值为,|f(0)|=|b|≤,﹣≤b≤①,同理﹣≤1+a+b≤②,﹣≤1﹣a+b≤③,②+③得:﹣≤b≤﹣④,由①、④得:b=﹣,当b=﹣时,分别代入②、③得:?a=0,故4a+3b=﹣,故答案为:﹣.【点评】本题考查了二次函数的性质,考查不等式问题,是一道中档题.15.已知,且,则的值为
参考答案:16.已知角的顶点与原点重合,始边与x轴的正半轴重合,终边过点(1,2),则
.参考答案:由题意得,所以
17.汽车的最佳使用年限是使年均消耗费用最低的年限(年均消耗费用=年均成本费用+年均维修费),设某种汽车的购车的总费用为50000元;使用中每年的保险费、养路费及汽油费合计为6000元;前年的总维修费满足,已知第一年的总维修费为1000元,前两年的总维修费为3000元,则这种汽车的最佳使用年限为
年.参考答案:10略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知为实数,函数.(1)设,若,使得成立,求实数的取值范围.(2)定义:若函数的图象上存在两点、,设线段的中点为,若在点处的切线与直线平行或重合,则函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”.试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由;参考答案:(1)由,得,记,所以当时,,递减,当时,,递增;所以,,记,,,时,递减;时,递增;,,故实数的取值范围为.………………6分(2)函数的定义域为,,若函数是“中值平衡函数”,则存在使得,即,(※)①当时,(※)对任意的都成立,所以函数是“中值平衡函数”,且函数的“中值平衡切线”有无数条;②当时,有,设,则方程在区间上有解,记函数,则,所以函数在区间递增,,所以当时,,即方程在区间上无解,即函数不是“中值平衡函数”;综上所述,当时,函数是“中值平衡函数”,且函数的“中值平衡切线”有无数条;当时,不是“中值平衡函数”;………………12分19.在如图的几何体中,平面CDEF为正方形,平面ABCD为等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.(1)求证:AC⊥平面FBC;(2)求直线BF与平面ADE所成角的正弦值.参考答案:考点:用空间向量求直线与平面的夹角;直线与平面垂直的判定;直线与平面所成的角.专题:空间位置关系与距离;空间向量及应用.分析:(1)证明1:由余弦定理得,所以AC⊥BC,由此能够证明AC⊥平面FBC.证明2:设∠BAC=α,∠ACB=120°﹣α.由正弦定理能推出AC⊥BC,由此能证明AC⊥平面FBC.(2)解法1:由(1)结合已知条件推导出AC⊥FC.由平面CDEF为正方形,得到CD⊥FC,由此入手能求出直线BF与平面ADE所成角的正弦值.解法2:由题设条件推导出CA,CB,CF两两互相垂直,建立空间直角坐标系利用向量法能求出直线BF与平面ADE所成角的正弦值.解答:(1)证明1:因为AB=2BC,∠ABC=60°,在△ABC中,由余弦定理得:AC2=(2BC)2+BC2﹣2×2BC?BC?cos60°,即.…(2分)所以AC2+BC2=AB2.所以AC⊥BC.…(3分)因为AC⊥FB,BF∩BC=B,BF、BC?平面FBC,所以AC⊥平面FBC.…(4分)证明2:因为∠ABC=60°,设∠BAC=α(0°<α<120°),则∠ACB=120°﹣α.在△ABC中,由正弦定理,得.…(1分)因为AB=2BC,所以sin(120°﹣α)=2sinα.整理得,所以α=30°.…(2分)所以AC⊥BC.…(3分)因为AC⊥FB,BF∩BC=B,BF、BC?平面FBC,所以AC⊥平面FBC.…(4分)(2)解法1:由(1)知,AC⊥平面FBC,FC?平面FBC,所以AC⊥FC.因为平面CDEF为正方形,所以CD⊥FC.因为AC∩CD=C,所以FC⊥平面ABCD.…(6分)取AB的中点M,连结MD,ME,因为ABCD是等腰梯形,且AB=2BC,∠DAM=60°,所以MD=MA=AD.所以△MAD是等边三角形,且ME∥BF.…(7分)取AD的中点N,连结MN,NE,则MN⊥AD.…(8分)因为MN?平面ABCD,ED∥FC,所以ED⊥MN.因为AD∩ED=D,所以MN⊥平面ADE.…(9分)所以∠MEN为直线BF与平面ADE所成角.…(10分)因为NE?平面ADE,所以MN⊥NE.…(11分)因为,,…(12分)在Rt△MNE中,.…(13分)所以直线BF与平面ADE所成角的正弦值为.…(14分)解法2:由(1)知,AC⊥平面FBC,FC?平面FBC,所以AC⊥FC.因为平面CDEF为正方形,所以CD⊥FC.因为AC∩CD=C,所以FC⊥平面ABCD.…(6分)所以CA,CB,CF两两互相垂直,建立如图的空间直角坐标系C﹣xyz.…(7分)因为ABCD是等腰梯形,且AB=2BC,∠ABC=60°所以CB=CD=CF.不妨设BC=1,则B(0,1,0),F(0,0,1),,,,所以,,.…(9分)设平面ADE的法向量为=(x,y,z),则有即取x=1,得=是平面ADE的一个法向量.…(11分)设直线BF与平面ADE所成的角为θ,则.…(13分)所以直线BF与平面ADE所成角的正弦值为.…(14分)点评:本题考查直线与平面垂直的证明,考查直线与平面所成角的正弦值,解题时要注意向量法的合理运用,注意空间思维能力的培养.20.已知a∈R,函数f(x)=x2﹣2ax+1.(Ⅰ)若a≤2,求f(x)在区间[1,2]上的最小值m(a);(Ⅱ)记g(x)=f(x)+|x﹣a|,若g(x)在[1,2]上恰有一个零点,求a的取值范围.参考答案:【考点】二次函数的性质;函数的零点.【专题】分类讨论;分类法;函数的性质及应用.【分析】(Ⅰ)对函数配方得f(x)=(x﹣a)2+1﹣a2,可得对称轴方程为x=a.只需对对称轴a进行分类讨论即可;(Ⅱ)根据问1,对a分类讨论:当a<1时,由(Ⅰ)知,f(x)≥2﹣2a>0,得出g(x)>0,无零点;当a=1时,g(x)=(x﹣1)2+|x﹣1|在[1,2]上恰有一个零点x=1;当1<a<2时,去绝对值,利用对称轴得出分段函数单调性,解出;当a≥2时,去绝对值,讨论函数单调性,判断g(x)<0在[1,2]上恒成立,即此时没有零点.【解答】解:(Ⅰ)f(x)=(x﹣a)2+1﹣a2,对称轴方程为x=a.
…(1分)(1)当1≤a≤2时,m(a)=f(a)=1﹣a2.
…(3分)(2)当a<1时,f(x)在区间[1,2]上是单调递增,所以m(a)=f(1)=2﹣2a.
…(5分)综上所述:…(6分)(Ⅱ)(1)当a<1时,由(Ⅰ)知,f(x)≥2﹣2a>0,从而g(x)>0,此时g(x)在[1,2]上没有零点.
…(8分)(2)当a=1时,g(x)=(x﹣1)2+|x﹣1|在[1,2]上恰有一个零点x=1.…(9分)(3)当1<a<2时,…(10分)由,知g(x)在上单调递减,在单调递增.又g(1)=1﹣a<0,所以要使得g(x)在[1,2]上恰有一个零点,只需g(2)=7﹣5a≥0,解得,所以.
…(12分)(4)当a≥2时,g(x)=x2﹣2ax
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报参考:建构自主知识体系视域下的档案学术语革命研究
- 2025版委托担保合同样本:医疗器械注册融资担保协议6篇
- 2025版小学学生安全责任追究与保障协议15篇
- 二零二五版煤炭行业运输成本控制协议4篇
- 2025年货运从业资格证网上考核app
- 2025年度文化创意产业合作合同4篇
- 个人住宅租赁合同模板(2024年修订版)版B版
- 2025版个人小产权房屋买卖合同范本及操作指南4篇
- 2024物业公司提供住宅小区互联网接入服务合同
- 2025版学校浴池热水供应系统优化承包合同3篇
- 南通市2025届高三第一次调研测试(一模)地理试卷(含答案 )
- 2025年上海市闵行区中考数学一模试卷
- 2025中国人民保险集团校园招聘高频重点提升(共500题)附带答案详解
- 重症患者家属沟通管理制度
- 法规解读丨2024新版《突发事件应对法》及其应用案例
- IF钢物理冶金原理与关键工艺技术1
- 小学二年级数学口算练习题1000道
- 化学-福建省龙岩市2024届高三下学期三月教学质量检测(一模)试题和答案
- 凸优化在经济学与金融学中的应用
- 家谱、宗谱颁谱庆典讲话
- 高速公路收费员培训课件
评论
0/150
提交评论