2025年冀教版拓展型课程化学上册阶段测试试卷_第1页
2025年冀教版拓展型课程化学上册阶段测试试卷_第2页
2025年冀教版拓展型课程化学上册阶段测试试卷_第3页
2025年冀教版拓展型课程化学上册阶段测试试卷_第4页
2025年冀教版拓展型课程化学上册阶段测试试卷_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年冀教版拓展型课程化学上册阶段测试试卷995考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、在给定条件下,下列选项所示的物质间转化能实现的是A.B.C.D.2、根据下列实验操作和现象得出的结论正确的是。选项实验现象结论A甲烷与氯气在光照下反应,将反应后的气体通入紫色石蕊试液中紫色石蕊试液变红反应后的气体是HCIB向正已烷中加入催化剂,高温使其热裂解,将产生的气体通入溴水中溴水褪色裂解产生的气体是乙烯C向FeCI3溶液中滴入几滴30%的H2O2溶液有气体产生,一段时间后,FeCl3溶液颜色加深Fe3+能催化H2O2分解,该分解反应为放热反应D向某溶液中滴加氢氧化钠稀溶液后,将红色石蕊试纸置于试管口试纸不变蓝该溶液无NH4+

A.AB.BC.CD.D3、根据下列实验操作和现象;能得出正确结论的是。

A.AB.BC.CD.D4、如图是进行Mg与SiO2反应的实验装置,O2和H2O(g)的存在对该实验有较大影响。

下列说法不正确的是A.装稀硫酸仪器的名称是分液漏斗,II中洗气瓶内是碳酸氢钠溶液B.可以把装置I换成启普发生器C.实验开始时,必须先通一段时间X气体,再在III处加热D.当III处反应引发后,移走酒精灯,反应仍进行,说明该反应为放热反应5、下列实验合理的是A.吸收氨气,并防止倒吸B.证明非金属性:Cl>C>SiC.制备并收集少量NO2气体D.制备少量氧气6、用下列实验装置进行相应实验;能达到实验目的是()

A.用图1所示装置可收集NO气体B.用图2所示装置可吸收多余氨气且能防止倒吸C.用图3所示装置可实现反应:2H2OO2↑+2H2↑D.用图4所示装置可证明酸性:H2SO4>H2CO3>H2SiO3评卷人得分二、多选题(共3题,共6分)7、常温下,用溶液分别滴定体积和浓度均相同的三种一元弱酸的滴定曲线如图所示;图中横坐标a表示滴定百分数(滴定用量与滴定终点用量之比)。下列说法错误的是。

A.常温下,酸性:B.当滴定至溶液中存在:C.滴定当时,溶液中D.初始浓度8、某同学按图示装置进行实验;产生足量的气体通入c中,最终出现浑浊。下列所选物质组合符合要求的是。

a中试剂b中试剂c中溶液A浓硫酸浓盐酸饱和食盐水B浓硫酸Cu溶液C稀硫酸饱和溶液D浓氨水碱石灰溶液

A.AB.BC.CD.D9、“探究与创新能力”是化学的关键能力。下列各项中“操作或现象”能达到预期“实验目的”的是。选项实验目的操作或现象A制作简单原电池将铁钉和铜丝连接插入食醋中即可形成原电池B验证碳能与浓硝酸反应向浓硝酸中插入红热的碳,产生红棕色气体C鉴别溴蒸气和分别通入溶液中,产生浅黄色沉淀的是溴蒸气D除去乙酸乙酯中的少量乙酸加入足量饱和氢氧化钠溶液,充分混合后分液

A.AB.BC.CD.D评卷人得分三、填空题(共8题,共16分)10、水丰富而独特的性质与其结构密切相关。

(1)对于水分子中的共价键,依据原子轨道重叠的方式判断,属于_________键;依据O与H的电负性判断,属于_________共价键。

(2)水分子中,氧原子的价层电子对数为_________,杂化轨道类型为_________。

(3)下列事实可用“水分子间存在氢键”解释的是_________(填字母序号)。

a.常压下;4℃时水的密度最大。

b.水的沸点比硫化氢的沸点高160℃

c.水的热稳定性比硫化氢强。

(4)水是优良的溶剂,常温常压下极易溶于水,从微粒间相互作用的角度分析原因:_________(写出两条)。

(5)酸溶于水可形成的电子式为_________;由于成键电子对和孤电子对之间的斥力不同,会对微粒的空间结构产生影响,如中H-N-H的键角大于中H-O-H的键角,据此判断和的键角大小:________(填“>”或“<”)。11、晶体硼熔点为1873K;其结构单元为正二十面体,结构如图所示。氮化硼(BN)有多种相结构,例如六方相氮化硼与立方相氮化硼,结构如图所示,六方相氮化硼与石墨相似,具有层状结构;立方相氮化硼是超硬材料。回答下列问题:

(1)基态硼原子有___种不同能量的电子,第二周期中,第一电离能介于硼元素与氮元素之间的元素有___种。

(2)晶体硼为___(填晶体类型),结构单元由___个硼原子构成,共含有___个B-B键。

(3)关于氮化硼两种晶体的说法,正确的是___。

a.立方相氮化硼含有σ键和π键。

b.六方相氮化硼层间作用力小;所以质地软。

c.两种晶体均为分子晶体。

d.两种晶体中的B-N键均为共价键。

(4)NH4BF4是合成氮化硼纳米管的原料之一,1molNH4BF4含有___mol配位键。12、油气开采;石油化工、煤化工等行业废气普遍含有的硫化氢;需要回收处理并加以利用。

H2S热分解反应:2H2S(g)=S2(g)+2H2(g)ΔH4=170kJ·mol-1,在1373K、100kPa反应条件下,对于n(H2S):n(Ar)分别为4:1、1:1、1:4、1:9、1:19的H2S-Ar混合气,热分解反应过程中H2S转化率随时间的变化如下图所示。

(1)n(H2S):n(Ar)越小,H2S平衡转化率___________,理由是___________

(2)n(H2S):n(Ar)=1:9对应图中曲线___________,计算其在0~0.1s之间,H2S分压的平均变化率为___________kPa·s-1。13、研究CO还原NOx对环境的治理有重要意义;相关的主要化学反应有:

ⅠNO2(g)+CO(g)CO2(g)+NO(g)ΔH1

Ⅱ2NO2(g)+4CO(g)N2(g)+4CO2(g)ΔH2<0

Ⅲ2NO(g)+2CO(g)N2(g)+2CO2(g)ΔH3<0

(1)已知:每1mol下列物质分解为气态基态原子吸收的能量分别为。NO2COCO2NO819kJ1076kJ1490kJ632kJ

①根据上述信息计算ΔH1=_______kJ·molˉ1。

②下列描述正确的是_______。

A在绝热恒容密闭容器中只进行反应Ⅰ;若压强不变,能说明反应Ⅰ达到平衡状态。

B反应ⅡΔH<0;ΔS<0;该反应在低温下自发进行。

C恒温条件下;增大CO的浓度能使反应Ⅲ的平衡向正向移动,平衡常数增大。

D上述反应达到平衡后;升温,三个反应的逆反应速率均一直增大直至达到新的平衡。

(2)在一个恒温恒压的密闭容器中,NO2和CO的起始物质的量比为1∶2进行反应,反应在无分子筛膜时二氧化氮平衡转化率和有分子筛膜时二氧化氮转化率随温度的变化如图所示,其中分子筛膜能选择性分离出N2。

①二氧化氮平衡转化率随温度升高而降低的原因为_______。

②P点二氧化氮转化率高于T点的原因为_______。

(3)实验测得,V正=k正·c2(NO)·c2(CO),V逆=k逆·c(N2)·c2(CO2)(k正、k逆为速率常数;只与温度有关)。

①一定温度下,向体积为1L的密闭容器中充入一定量的NO和CO,只发生反应Ⅲ,在tl时刻达到平衡状态,此时n(CO)=0.1mol,n(NO)=0.2mol,n(N2)=amol,且N2占平衡总体积的1/4则:=_______。

②在t2时刻,将容器迅速压缩到原容积的1/2,在其它条件不变的情况下.t3时刻达到新的平衡状态。请在图中补充画出t2-t3-t4时段,正反应速率的变化曲线_______。

14、常温下有浓度均为0.1mol/L的四种溶液:①HCl;②CH3COOH;③NaOH;④Na2CO3。

(1)这四种溶液中水的电离程度由大到小的顺序是___(用序号填写)。

(2)等体积混合②和③的溶液中离子浓度的大小顺序是___。

(3)常温下,0.1mol/L的CH3COOH溶液pH=3,则CH3COOH溶液的电离平衡常数Ka=___。

(4)用离子方程式表示④的水溶液呈碱性的主要原因:___。

(5)取10mL溶液①,加水稀释到1000mL,则该溶液中由水电离出的c(H+)约为___。15、根据所学知识回答下列问题。

(1)0.1mol•L-1的NaHCO3溶液中各离子的浓度由大到小的顺序为__。

(2)已知:常温时,H2R的电离平衡常数Ka1=1.23×10-2,Ka2=5.60×10-8,则0.1mol•L-1的NaHR溶液显__(填“酸”;“中”或“碱”)性。

(3)实验室用AlCl3(s)配制AlCl3溶液的操作为__,若将AlCl3溶液蒸干并灼烧至恒重;得到的物质为___(填化学式)。

(4)25℃时,将足量氯化银分别放入下列4种溶液中,充分搅拌后,银离子浓度由大到小的顺序是___(填标号);③中银离子的浓度为_____mol•L-1。(氯化银的Ksp=1.8×10-10)

①100mL0.1mol•L-1盐酸②100mL0.2mol•L-1AgNO3溶液。

③100mL0.1mol•L-1氯化铝溶液④100mL蒸馏水16、连二亚硫酸钠(Na2S2O4)俗称保险粉,是白色砂状或淡黄色粉末状固体,易溶于水、不溶于醇,该物质具有强还原性,在空气中易被氧化为NaHSO4,75℃以上会分解产生SO2。是重要的有机合成原料和漂白剂。

制取Na2S2O4常用甲酸钠法:控制温度60~70℃,在甲酸钠(HCOONa)的甲醇溶液中,边搅拌边滴加Na2CO3甲醇溶液,同时通入SO2,即可生成Na2S2O4。反应原理如下:2HCOONa+4SO2+Na2CO3=2Na2S2O4+H2O+3CO2

(1)如图,要制备并收集干燥纯净的SO2气体,接口连接的顺序为:a接__,__接__,__接__。制备SO2的化学方程式为___。

(2)实验室用图装置制备Na2S2O4。

①Na2S2O4中硫元素的化合价为___。

②仪器A的名称是___。

③水浴加热前要通一段时间N2,目的是___。

④为得到较纯的连二亚硫酸钠,需要对在过滤时得到的连二亚硫酸钠进行洗涤,洗涤的方法是___。

⑤若实验中所用Na2SO3的质量为6.3g,充分反应后,最终得到mg纯净的连二亚硫酸钠,则连二亚硫酸钠的产率为___(用含m的代数式表示)。17、根据所学知识回答下列问题。

(1)0.1mol•L-1的NaHCO3溶液中各离子的浓度由大到小的顺序为__。

(2)已知:常温时,H2R的电离平衡常数Ka1=1.23×10-2,Ka2=5.60×10-8,则0.1mol•L-1的NaHR溶液显__(填“酸”;“中”或“碱”)性。

(3)实验室用AlCl3(s)配制AlCl3溶液的操作为__,若将AlCl3溶液蒸干并灼烧至恒重;得到的物质为___(填化学式)。

(4)25℃时,将足量氯化银分别放入下列4种溶液中,充分搅拌后,银离子浓度由大到小的顺序是___(填标号);③中银离子的浓度为_____mol•L-1。(氯化银的Ksp=1.8×10-10)

①100mL0.1mol•L-1盐酸②100mL0.2mol•L-1AgNO3溶液。

③100mL0.1mol•L-1氯化铝溶液④100mL蒸馏水评卷人得分四、结构与性质(共4题,共28分)18、铬是由法国化学家沃克兰于1798年在巴黎发现。目前铬被广泛应用于冶金;化工、铸铁、耐火及高精端科技等领域。

(1)铬元素基态原子的价电子排布式为___________。

(2)金属铬的第二电离能和锰的第二电离能分别为1590.6kJ/mol、1509.0kJ/mol,的原因是___________。

(3)雷氏盐(Reineckesalt)的化学式为是一种易溶于水和乙醇的暗红色固体。

①雷氏盐中存在的化学键有___________(填序号)。

A.键B.键C.氢键D.配位键E.金属键。

②配体中C采取的杂化方式为___________,可用于形成配位键的原子有___________。

③的价层电子对数为___________,空间构型是___________,写出一种与互为等电子体的分子___________。

④乙醇能与水以任意比例互溶的原因是___________,___________。

(4)硒化铬的立方晶胞结构如图所示,晶胞参数为anm和bnm,则硒化铬的密度为___________(列出表达式即可)。

19、NH3具有易液化、含氢密度高、应用广泛等优点,NH3的合成及应用一直是科学研究的重要课题。

(1)以H2、N2合成NH3;Fe是常用的催化剂。

①基态Fe原子的电子排布式为___________。

②实际生产中采用铁的氧化物Fe2O3、FeO,使用前用H2和N2的混合气体将它们还原为具有活性的金属铁。铁的两种晶胞(所示图形为正方体)结构示意如下:

i.两种晶胞所含铁原子个数比为___________。

ii.图1晶胞的棱长为apm(1pm=1×10-10cm),则其密度ρ=___________g·cm-3。

③我国科学家开发出Fe—LiH等双中心催化剂,在合成NH3中显示出高催化活性。第一电离能(I1):I1(H)>I1(Li)>I1(Na),原因是___。

(2)化学工业科学家侯德榜利用下列反应最终制得了高质量的纯碱:NaCl+NH3+CO2+H2O=NaHCO3↓+NH4Cl

①1体积水可溶解1体积CO2,1体积水可溶解约700体积NH3。NH3极易溶于水的原因是_____。

②反应时,向饱和NaCl溶液中先通入______。

③NaHCO3分解得Na2CO3。空间结构为________。

(3)NH3、NH3BH3(氨硼烷)储氢量高,是具有广泛应用前景的储氢材料。元素HBN电负性2.12.03.0

①NH3的中心原子的杂化轨道类型为___________。

②NH3BH3存在配位键,提供空轨道的是___________。

③比较熔点:NH3BH3___________CH3CH3(填“>”或“<”)。20、超细铜粉主要应用于导电材料;催化剂等领域中。超细铜粉的某制备方法如下:

(1)Cu2+的价电子排布式为____。

(2)下列关于[Cu(NH3)4]SO4的说法中,正确的有____。(填字母序号)

A.[Cu(NH3)4]SO4中所含的化学键有离子键;极性键和配位键。

B.[Cu(NH3)4]SO4的组成元素中第一电离能最大的是氧元素。

C.[Cu(NH3)4]SO4的外界离子的空间构型为正四面体。

(3)SO32-离子中S原子的杂化方式为____,SO32-离子的空间构型为____。

(4)与SO3互为等电子体的一种分子的分子式是____

(5)下图是铜的某种氧化物的晶胞结构示意图,由此可确定该氧化物的化学式为______。

21、I.元素周期表中80%左右的非金属元素在现代技术包括能源;功能材料等领域占有极为重要的地位。

(1)氮及其化合物与人类生产、生活息息相关,基态N原子中电子在2p轨道上的排布遵循的原则是_____,N2F2分子中N原子的杂化方式是_______,1molN2F2含有____个δ键。

(2)高温陶瓷材料Si3N4晶体中N-Si-N的键角大于Si-N-Si的键角,原因是_______。

II.金属元素铁;铜及其化合物在日常生产、生活有着广泛的应用。

(1)铁在元素周期表中的位置_________。

(2)配合物Fe(CO)x常温下呈液态,熔点为-20.5℃,沸点为103℃,易溶于非极性溶剂,据此可判断Fe(CO)x晶体属于_____(填晶体类型)。Fe(CO)x的中心原子价电子数与配体提供电子吸之和为18,则x=________。

(3)N2是CO的一种等电子体,两者相比较沸点较高的为_______(填化学式)。

(4)铜晶体中铜原子的堆积方式如下图甲所示。

①基态铜原子的核外电子排布式为___________。

②每个铜原子周围距离最近的铜原子数目为___________。

(5)某M原子的外围电子排布式为3s23p5,铜与M形成化合物的晶胞如下图乙所示(黑点代表铜原子)。已知该晶体的密度为ρg·cm-3,阿伏加德罗常数为NA,则该晶体中铜原子和M原子之间的最短距离为_________pm。(只写计算式)。评卷人得分五、有机推断题(共1题,共10分)22、G是一种治疗心血管疾病的药物;合成该药物的一种路线如下。

已知:R1CH2BrR1CH=CHR2

完成下列填空:

(1)写出①的反应类型_______。

(2)反应②所需的试剂和条件_______。

(3)B中含氧官能团的检验方法_______。

(4)写出E的结构简式_______。

(5)写出F→G的化学方程式_______。

(6)写出满足下列条件,C的同分异构体的结构简式_______。

①能发生银镜反应;②能发生水解反应;③含苯环;④含有5个化学环境不同的H原子。

(7)设计一条以乙烯和乙醛为原料(其它无机试剂任选)制备聚2-丁烯()的合成路线_______。(合成路线常用的表达方式为:AB目标产物)评卷人得分六、原理综合题(共3题,共9分)23、2019年10月27日;国际清洁能源会议(ICCE2019)在北京开幕,碳化学成为这次会议的重要议程。甲醇;甲醛(HCHO)等碳化合物在化工、医药、能源等方面都有广泛的应用。

(1)甲醇脱氢法可制备甲醛(反应体系中各物质均为气态);反应生成1molHCHO过程中能量变化如图1。

已知:

则反应_______

(2)氧化剂可处理甲醛污染,结合图2分析春季(水温约为15℃)应急处理被甲醛污染的水源应选择的试剂_______(填化学式)。

(3)纳米二氧化钛催化剂可用于工业上合成甲醇:CO(g)+2H2(g)⇌CH3OH(g)∆H=akJ∙mol-1。

①按投料比将H2与CO充入VL恒容密闭容器中,在一定条件下发生反应,测定CO的平衡转化率与温度、压强的关系如图3所示。则a=_______(填“>”或“<”)0;压强由小到大的关系是_______。

②在温度为T1℃,向某恒容密闭容器中充入H2和CO发生上述反应,起始时达到平衡时,CO的转化率为图3中的M点对应的转化率,则在该温度下,对应的N点的平衡常数为_______(保留3位有效数字)。

(4)工业上利用CH4(混有CO和H2)与水蒸气在一定条件下制取H2:CH4(g)+H2O(g)⇌CO(g)+3H2(g)∆H=+203kJ∙mol-1.该反应的逆反应速率表达式为为速率常数,在某温度下测得实验数据如下表所示:。CO浓度()H2浓度()逆反应速率()0.1c18.0c2c116.0c20.156.75

由上述数据可得该温度下,c2=_______,该反应的逆反应速率常数K=_______

(5)科研人员设计了甲烷燃料电池并用于电解。如图所示,电解质是掺杂了Y2O3与ZrO2的固体,可在高温下传导O2-。

①C极的Pt为_______极(选填“阳”或“阴”)。

②该电池工作时负极反应方程式为_______。

③用该电池电解饱和食盐水,一段时间后收集到标况下气体总体积为112mL,则电解后所得溶液在25℃时pH=_______(假设电解前后NaCl溶液的体积均为500mL)。24、研究二氧化硫;氮氧化物等大气污染物的治理具有重要意义;请回答下列问题:

I.为减少SO2的排放;将煤转化为清洁气体燃料。已知:

2H2(g)+O2(g)=2H2O(g)ΔH=-483.6kJ·mol-1

C(s)+O2(g)=CO(g)ΔH=-110.4kJ·mol-1

(1)写出焦炭与水蒸气反应的热化学方程式_________________________。

(2)洗涤含SO2的烟气,含以下物质的溶液可作洗涤剂的是____________________。

A.NaHSO3B.NaHCO3C.BaCl2D.FeCl3

II.NOx是汽车尾气中的主要污染物之一。

(3)汽车尾气中生成NO的反应为:N2(g)+O2(g)⇌2NO(g)ΔH>0

①T℃时,2L密闭气缸中充入4molN2和1molO2发生反应,5min后达平衡,测得NO为1mol。计算该温度下,N2的平均反应速率v(N2)=_______________,反应的平衡常数K=____________。

②如图曲线a表示该反应在温度T℃下N2的物质的量随时间的变化,曲线b表示该反应在某一起始条件改变时N2的物质的量随时间的变化,则改变的条件可能是____________(写出一条即可)III.汽车燃油不完全燃烧时会产生CO。

(4)有人设想按2CO(g)=2C(s)+O2(g)反应除去CO,但事实上该反应在任何温度下都不能实现,由此判断该反应的ΔH_______0。(填写“>”;“<”或者“=”)

(5)在汽车尾气系统中安装催化转化器可降低尾气中污染物的排放,其反应为:2NO(g)+2CO(g)2CO2(g)+N2(g)。已知该反应在570K时的平衡常数的数值为1×1059,但反应速率极慢。为了提高尾气的净化效率在实际操作中最可行的措施是_____。

A.升高温度B.增大压强C.使用高效催化剂25、研究二氧化硫;氮氧化物等大气污染物的治理具有重要意义;请回答下列问题:

I.为减少SO2的排放;将煤转化为清洁气体燃料。已知:

2H2(g)+O2(g)=2H2O(g)ΔH=-483.6kJ·mol-1

C(s)+O2(g)=CO(g)ΔH=-110.4kJ·mol-1

(1)写出焦炭与水蒸气反应的热化学方程式_________________________。

(2)洗涤含SO2的烟气,含以下物质的溶液可作洗涤剂的是____________________。

A.NaHSO3B.NaHCO3C.BaCl2D.FeCl3

II.NOx是汽车尾气中的主要污染物之一。

(3)汽车尾气中生成NO的反应为:N2(g)+O2(g)⇌2NO(g)ΔH>0

①T℃时,2L密闭气缸中充入4molN2和1molO2发生反应,5min后达平衡,测得NO为1mol。计算该温度下,N2的平均反应速率v(N2)=_______________,反应的平衡常数K=____________。

②如图曲线a表示该反应在温度T℃下N2的物质的量随时间的变化,曲线b表示该反应在某一起始条件改变时N2的物质的量随时间的变化,则改变的条件可能是____________(写出一条即可)III.汽车燃油不完全燃烧时会产生CO。

(4)有人设想按2CO(g)=2C(s)+O2(g)反应除去CO,但事实上该反应在任何温度下都不能实现,由此判断该反应的ΔH_______0。(填写“>”;“<”或者“=”)

(5)在汽车尾气系统中安装催化转化器可降低尾气中污染物的排放,其反应为:2NO(g)+2CO(g)2CO2(g)+N2(g)。已知该反应在570K时的平衡常数的数值为1×1059,但反应速率极慢。为了提高尾气的净化效率在实际操作中最可行的措施是_____。

A.升高温度B.增大压强C.使用高效催化剂参考答案一、选择题(共6题,共12分)1、B【分析】【详解】

A.因为酸性:所以反应不发生,所以不能实现;A错误;

B.通过铝热反应:可以实现B正确;

C.乙醇的催化氧化反应为:C错误;

D.乙醇消去反应制取乙烯反应为:D错误;

故选B。2、C【分析】【详解】

甲烷与氯气在光照下反应,将反应后的混合气体通入紫色石蕊试液中紫色石蕊试液变红且不褪色,混合气体中含有HC1,故A错误;向正已烷中加入催化剂,然后高温热裂解,将产生的气体通入溴水中溴水褪色裂解产生的气体中含有烯烃,但不一定是乙烯,故B错误;向FeCI3溶液中滴入几滴30%的H2O2有氧气产生,一段时间后溶液颜色加深,Fe3+能催化H2O2分解且该分解反应为放热反应,故C正确;铵盐与碱反应,加热才能放出氨气,向某溶液中滴加氢氧化钠稀溶液后,将红色石蕊试纸置于试管口,试纸不变蓝,不一定无NH4+;故D错误。

点睛:甲烷与氯气在光照下反应,反应后的混合气体中含有氯化氢、氯代烃,可能含有剩余的氯气,将反应后的气体通入紫色石蕊试液中,紫色石蕊试液变红且不褪色,一定含有氯化氢,紫色石蕊试液变红后褪色,不一定有氯化氢。3、C【分析】【详解】

A.如果白色沉淀为亚硫酸钡,则X可能为氨气,没有强氧化性;如果白色沉淀为硫酸钡,X也可能为氯气等强氧化性气体,故A错误;

B.HCI不是Cl元素的最高价氧化物的水合物,所以不能根据HCl和硅酸酸性强弱判断非金属性强弱,故B错误;

C.常温下相同浓度的钠盐,如果溶液pH越大,该酸的酸性越弱。常温下,浓度均为0.1molL-1NaHCO3和CH3COONa溶液的pH,前者的pH大,则酸性CH3COO>H2CO3,故C正确;

D.Y溶液中加入硝酸酸化的Ba(NO)3,产生白色沉淀,Y溶液中可能含有SO42-,也可能含有SO2,故D错误;

故选C。

【点睛】

判断盐溶液的酸碱性判断酸性的强弱。即同温下,相同浓度的钠盐溶液,如果pH越大,说明该酸的酸性越弱。4、A【分析】【分析】

【详解】

A.装稀硫酸仪器的名称是分液漏斗,Mg与SiO2反应的实验装置,O2和H2O(g)的存在对该实验有较大影响;因此II中洗气瓶内液体作用是干燥气体,应盛放浓硫酸,故A错误;

B.I是实验室制氢气;可以把装置I换成启普发生器,可以达到随开随用,随关随停,故B正确;

C.实验开始时,必须先通一段时间X气体,排除装置内的空气,以免镁和氧气反应,再在III处加热,Mg与SiO2反应;故C正确;

D.当III处反应引发后;移走酒精灯,反应仍进行,说明该反应为放热反应,故D正确。

综上所述,答案为A。5、A【分析】【分析】

A.氨气不溶于四氯化碳;

B.比较非金属性;应用最高价氧化物对应的水化物;

C.二氧化氮不能用排水法收集;

D.反应剧烈不能用简易气体发生装置制备。

【详解】

A.氨气不溶于四氯化碳;氨气与水不直接接触,可防止倒吸,B正确;

B.比较非金属性;应用最高价氧化物对应的水化物,且盐酸易挥发不能排除HCl的影响,B错误;

C.二氧化氮易溶于水;且与水反应不能用排水法收集,C错误;

D.过氧化钠与水反应剧烈;不能用简易气体发生装置制备,D错误;

正确答案为A。6、D【分析】【分析】

【详解】

A.图1中NO气体极易被空气中的氧气氧化,其密度小于CO2的密度,应该短管进入,长管排出CO2;故A不能实现;

B.图2中苯密度比水小;漂在上层不能起到防止倒吸的作用,故B不能实现;

C.图3中Cu做阳极失电子溶解,变成Gu2+,Gu2+进入溶液;石墨电极是阴极,H+得电子析出H2,溶液中生成Cu(OH)2,不能实现2H2OO2↑+2H2↑;故C错误;

D.用图4所示装置中硫酸不挥发,可与碳酸钠反应放出二氧化碳气体,可证明酸性:H2SO4>H2CO3,生成的二氧化碳可与硅酸钠溶液反应生成H2SiO3,可证明H2CO3>H2SiO3,所以图4装置可以证明:H2SO4>H2CO3>H2SiO3;故D正确;

故答案:D。二、多选题(共3题,共6分)7、BD【分析】【详解】

A.由起始点可以看出,酸性:A项正确;

B.当滴定至溶液中存在:B项错误;

C.当时,溶液呈酸性,C项正确;

D.D项错误。

故选BD。8、AC【分析】【详解】

A.浓硫酸加入浓盐酸中,生成气体,生成的气体通入饱和食盐水中,根据同离子效应,析出晶体;A符合题意;

B.浓硫酸和铜在加热条件下才能反应生成不符合实验要求,B不符合题意;

C.和稀硫酸反应生成与饱和溶液反应生成晶体;C符合题意;

D.浓氨水和碱石灰生成通入溶液中,先生成沉淀,继续通入氨气,溶解生成D不符合题意;

故选AC。9、AC【分析】【分析】

【详解】

A.将铁钉和铜丝连接插入食醋中即可形成简单铁铜原电池;故A符合题意;

B.浓硝酸受热分解能放出红棕色二氧化氮气体;所以向浓硝酸中插入红热的碳,产生红棕色气体,不能证明是碳与浓硝酸反应,故B不符合题意;

C.因为溴蒸气能和溶液反应;产生浅黄色溴化银沉淀,故C符合题意;

D.因为足量饱和氢氧化钠溶液能和乙酸乙酯反应;所以不能用足量饱和氢氧化钠溶液除去乙酸乙酯中的少量乙酸,故D不符合题意;

故答案:AC。三、填空题(共8题,共16分)10、略

【分析】【详解】

(1)对于水分子中的共价键,依据原子轨道重叠的方式判断,属于键;O与H的电负性不同;共用电子对偏向于O,则该共价键属于极性共价键;

(2)水分子中,氧原子的价层电子对数为杂化轨道类型为sp3;

(3)a.水中存在氢键;导致冰的密度小于水的密度,且常压下,4℃时水的密度最大,a正确;

b.水分子间由于存在氢键,使分子之间的作用力增强,因而沸点比同主族的H2S高,b正确;

c.水的热稳定性比硫化氢强的原因是其中的共价键的键能更大;与氢键无关,c错误;

故选ab;

(4)极易溶于水的原因为NH3和H2O极性接近;依据相似相溶原理可知,氨气在水中的溶解度大;氨分子和水分子间可以形成氢键,大大增强溶解能力;

(5)的电子式为有1对孤电子对,有2对孤电子对,孤电子对之间的排斥力大于孤电子对与成键电子对之间的排斥力,水中键角被压缩程度更大,故和的键角大小:>【解析】(1)极性。

(2)4sp3

(3)ab

(4)NH3和H2O极性接近;依据相似相溶原理可知,氨气在水中的溶解度大;氨分子和水分子间可以形成氢键,大大增强溶解能力。

(5)>11、略

【分析】【分析】

(1)基态硼原子的电子排布式为1s22s22p1;电子位于1s;2s、2p三个能量不同的能级上;同周期元素,从左到右,第一电离能呈增大的趋势,由于全充满和半充满的缘故,ⅡA族和ⅤA族元素第一电离能大于相邻元素;

(2)由晶体硼熔点为1873K可知,晶体硼为熔沸点高、硬度大的原子晶体;在硼原子组成的正二十面体结构中,每5个面共用一个顶点,每个面拥有这个顶点的每2个面共用一个B-B键,每个面拥有这个B-B键的

(3)a.由图可知;立方相氮化硼中N原子和B原子之间只存在单键;

b.由图可知;六方相氮化硼层间为分子间作用力,分子间作用力小;

c.由图可知;立方相氮化硼为空间网状结构,属于原子晶体;

d.非金属元素之间易形成共价键;

(4)NH4BF4是由NH4+和BF4—构成,NH4+中N原子和其中一个H原子之间存在配位键、BF4—中B原子和其中一个F原子之间存在一个配位键。

【详解】

(1)基态硼原子的电子排布式为1s22s22p1;电子位于1s;2s、2p三个能量不同的能级上,则有3种不同能量的电子;同周期元素,从左到右,第一电离能呈增大的趋势,由于全充满和半充满的缘故,ⅡA族和ⅤA族元素第一电离能大于相邻元素,则介于硼元素与氮元素之间的有Be、C、O三种元素,故答案为:3;3;

(2)由晶体硼熔点为1873K可知,晶体硼为熔沸点高、硬度大的原子晶体;在硼原子组成的正二十面体结构中,每5个面共用一个顶点,每个面拥有这个顶点的每个等边三角形拥有的顶点为20个等边三角形拥有的顶点为×20=12;每2个面共用一个B-B键,每个面拥有这个B-B键的每个等边三角形占有的B-B键为20个等边三角形拥有的B-B键为×20=30;故答案为:12;30;

(3)a.由图可知;立方相氮化硼中N原子和B原子之间只存在单键,则立方相氮化硼中含有σ键,不存在π键,故错误;

b.由图可知;六方相氮化硼层间为分子间作用力,分子间作用力小,导致其质地软,故正确;

c.由图可知;立方相氮化硼为空间网状结构,属于原子晶体,故错误;

d.非金属元素之间易形成共价键;所以N原子和B原子之间存在共价键,故正确;

bd正确,故答案为:bd;

(4)NH4BF4是由NH4+和BF4—构成,NH4+中N原子和其中一个H原子之间存在配位键、BF4—中B原子和其中一个F原子之间存在一个配位键,所以含有2个配位键,则1molNH4BF4含有2mol配位键,故答案为:2。【解析】①.3②.3③.原子晶体④.12⑤.30⑥.bd⑦.212、略

【分析】【分析】

2H2S(g)=S2(g)+2H2(g)ΔH4=170kJ·mol-1,该反应正方向为体积增大的反应,降低压强,平衡会向正反应方向移动;则对于n(H2S):n(Ar)为4:1、1:1、1:4、1:9、1:19的H2S-Ar混合气在图中对应的曲线分别是a、b;c、d、e。

【详解】

(1)由于正反应是体积增大的可逆反应,n(H2S):n(Ar)越小,H2S的分压越小,相当于降低压强,平衡向正反应方向移动,因此H2S平衡转化率越高;

(2)n(H2S):n(Ar)越小,H2S平衡转化率越高,所以n(H2S):n(Ar)=1:9对应的曲线是d;根据图像可知n(H2S):n(Ar)=1:9反应进行到0.1s时H2S转化率为0.24;假设在该条件下;硫化氢和氩的起始投料的物质的量分别为1mol和9mol,则根据三段式可知:

此时H2S的压强为≈7.51kPa,H2S的起始压强为10kPa,所以H2S分压的平均变化率为=24.9kPa·s-1。【解析】(1)越高n(H2S):n(Ar)越小,H2S的分压越小,平衡向正反应方向进行,H2S平衡转化率越高。

(2)d24.913、略

【分析】【详解】

(1)①ΔH1=E反应物-E生成物=819+1076-1490-632=-227kJ/mol;

②A.反应前后气体系数不变;如果是恒温恒容,无论平衡是否移动,容器中的压强均不变,换为绝热容器后,随着反应的正向进行,反应放出热量,体系温度升高,等量气体的压强随之增大,此时压强是变量,可以作为平衡的依据,A项正确;

B.当ΔH-TΔS<0时;反应自发进行,由ΔH<0,ΔS<0,推出该反应低温下自发进行,B项正确;

C.增大CO的浓度可以使反应Ⅲ的平衡向正向移动;但是平衡常数只受到温度的影响,温度不变,平衡常数不变,C项错误;

D.温度升高;反应速率增大,三个反应的逆反应速率均增大,三个反应均为放热反应,温度升高,反应向吸热方向进行,则平衡逆向移动,所以平衡移动的初期为逆反应速率大于正反应速率,为了达到新的平衡,逆反应速率向正反应速率靠近,逆反应速率会减小,所以逆反应速率的变化趋势为先增大后减小,D项错误;

(2)①反应为放热反应;温度升高,平衡向逆反应(吸热)方向进行,二氧化氮转化率降低;

②相同温度下,二氧化氮的转化率在P点较高是因为使用了分子筛膜,将产物N2分离出来;降低了产物的浓度,使平衡正向进行,从而二氧化氮的转化率提高;

(3)①列三段式求解:因为N2占平衡总体积的1/4,所以a=0.3mol,此时为平衡状态,有v正=v逆,即k正·c2(NO)·c2(CO)=k逆·c(N2)·c2(CO2);

②在t2时刻,将容器迅速压缩到原容积的1/2,压强瞬间增大为原来压强的两倍,正逆反应速率均增大,但是压强增大,平衡向正反应(气体系数减小)方向进行,则正反应速率大于逆反应速率,所以正反应速率的总体趋势为先突然增大,然后减小,直至平衡,其图像为【解析】①.-227②.AB③.反应为放热反应,温度升高,平衡逆向移动(或平衡常数减小)④.分子筛膜从反应体系中不断分离出N2,有利于反应正向进行,二氧化氮转化率升高⑤.270⑥.(起点的纵坐标为16,t3时刻达到平衡,t3-t4处于平衡状态与已有线平齐)14、略

【分析】【详解】

(1)水电离程度比较:碳酸钠溶液属于强碱弱酸盐;碳酸根离子水解导致溶液显碱性,促进了水的电离;盐酸是强酸溶液,氢氧化钠溶液是强碱溶液,溶液中水的电离都受到了抑制作用,其中盐酸中的氢离子浓度等于氢氧化钠溶液中的氢氧根离子浓度,二者中水的电离程度相等;醋酸溶液为弱酸,发生微弱的电离产生氢离子,抑制了水的电离,但醋酸溶液中氢离子浓度远小于盐酸,故水的电离程度比盐酸和氢氧化钠都强,综合而言这四种溶液中水的电离程度由大到小的顺序是④>②>①=③。故答案为:④>②>①=③。

(2)等体积的醋酸和氢氧化钠混合,混合后溶液恰好为醋酸钠溶液,属于强碱弱酸盐,醋酸根离子发生微弱的水解导致溶液显碱性,所以溶液中离子浓度的大小顺序是c(Na+)>c(CH3COO-)>c(OH-)>c(H+)。故答案为:c(Na+)>c(CH3COO-)>c(OH-)>c(H+)。

(3)常温下,0.1mol/L的CH3COOH溶液pH=3,可得溶液中c(H+)=10-3mol/L,由醋酸的电离方程式:CH3COOHCH3COO-+H+可得其电离平衡常数为:故答案为:10-5。

(4)碳酸钠溶液属于强碱弱酸盐,碳酸根离子水解导致溶液显碱性,促进了水的电离,其水解方程式为:CO+H2OHCO+OH-,HCO+H2OH2CO3+OH-,故答案为:CO+H2OHCO+OH-,HCO+H2OH2CO3+OH-。

(5)取10mLHCl溶液,加水稀释到1000mL,此时溶液中由HCl电离出的由此可知,此时溶液中的c(H+)=10-3mol/L,可得该溶液中由水电离出的故答案为:10−11mol/L。【解析】④>②>①=③c(Na+)>c(CH3COO-)>c(OH-)>c(H+)10-5CO+H2OHCO+OH-,HCO+H2OH2CO3+OH-10−11mol/L15、略

【分析】【详解】

(1)NaHCO3在水溶液中发生电离:NaHCO3=Na++电离产生是会发生电离作用:H++也会发生水解作用:+H2OH2CO3+OH-。发生电离、水解作用都会消耗离子导致c(Na+)>c();电离产生H+使溶液显酸性;水解产生OH-,使溶液显碱性。由于其水解作用大于电离作用,最终达到平衡时,溶液中c(OH-)>c(H+),但盐水解程度是微弱的,主要以盐电离产生的离子存在,所以c()>c(OH-);溶液中的H+除会电离产生,还有H2O电离产生,而只有电离产生,故离子浓度:c(H+)>c(),因此该溶液中各种离子浓度由大到小的顺序为:c(Na+)>c()>c(OH-)>c(H+)>c();

(2)在0.1mol•L-1的NaHR溶液中,存在HR-的电离作用:HR-R2-+H+,电离产生H+使溶液显酸性,同时也存在着水解中:HR-+H2OH2R+OH-,水解产生OH-,使溶液显碱性,其平衡常数Kh=<Ka2=5.60×10-8,说明HR-的电离作用大于水解作用;因此NaHR溶液显酸性;

(3)AlCl3是强酸弱碱盐,在溶液中会发生水解作用:AlCl3+3H2OAl(OH)3+3HCl,导致溶液变浑浊,由于水解产生HCl,因此根据平衡移动原理,若用固体配制溶液时,将其溶解在一定量的浓盐酸中,增加了H+的浓度,就可以抑制盐的水解,然后再加水稀释,就可以得到澄清溶液;若将AlCl3溶液蒸干,水解平衡正向进行直至水解完全,HCl挥发逸出,得到的固体是Al(OH)3,然后将固体灼烧至恒重,Al(OH)3分解产生Al2O3和H2O,最后得到的固体是Al2O3;

(4)氯化银在水中存在沉淀溶解平衡:AgCl(s)Ag+(aq)+Cl-(aq);Ag+、Cl-都会抑制物质的溶解,溶液中Ag+、Cl-浓度越大;其抑制AgCl溶解的程度就越大。

①100mL0.1mol•L-1盐酸中c(Cl-)=0.1mol/L;

②100mL0.2mol•L-1AgNO3溶液中c(Ag+)=0.2mol/L;

③100mL0.1mol•L-1氯化铝溶液中c(Cl-)=0.1mol/L×3=0.3mol/L;

④100mL蒸馏水中不含Cl-、Ag+;对氯化银在水中溶解无抑制作用。

它们抑制AgCl溶解程度③>②>①>④,AgNO3溶液中含有Ag+,该溶液中含有的c(Ag+)最大;则这四种液体物质中银离子浓度由大到小的顺序是:②>④>①>③;

③中c(Cl-)=0.3mol/L,由于AgCl的溶度积常数Ksp=c(Ag+)·c(Cl-)=1.8×10-10,则该溶液中c(Ag+)==6.0×10-10mol/L。【解析】c(Na+)>c()>c(OH-)>c(H+)>c()酸将AlCl3(s)溶解在较浓的盐酸中,然后加水稀释Al2O3②>④>①>③6.0×10-1016、略

【分析】【详解】

(1)亚硫酸钠和硫酸反应生成二氧化硫,反应的方程式为:Na2SO3+H2SO4(浓)═Na2SO4+SO2↑+H2O,生成的二氧化硫含有水蒸气,可用浓硫酸干燥,用向上排空气法收集,且用碱石灰吸收尾气,避免污染环境,则连接顺序为a接b;c接f,g接d;

(2)①Na2S2O4中硫元素的化合价为+3;

②由装置可知;仪器A的名称为恒压滴液漏斗;

③实验时应避免Na2S2O4和HCOONa被氧化,可应先通入二氧化硫,排净系统中的空气,防止加热时Na2S2O4和HCOONa被氧化,也可通一段时间N2;排净系统中的空气;

④洗涤连二亚硫酸钠时应与空气隔离;洗涤剂可用甲醇或乙醇,洗涤过程为:在无氧环境中,向漏斗中加入甲醇或乙醇至浸没晶体,待甲醇顺利流下,重复2-3次;

⑤设连二亚硫酸钠理论产率为x;根据硫原子守恒:

2Na2SO3~Na2S2O4

252174

6.3gx

则解得x=4.35g,产率为:【解析】bcfgdNa2SO3+H2SO4(浓)═Na2SO4+SO2↑+H2O+3恒压滴液漏斗排净系统中的空气向漏斗中加入甲醇或乙醇至浸没晶体,待甲醇顺利流下,重复2-3次17、略

【分析】【详解】

(1)NaHCO3在水溶液中发生电离:NaHCO3=Na++电离产生是会发生电离作用:H++也会发生水解作用:+H2OH2CO3+OH-。发生电离、水解作用都会消耗离子导致c(Na+)>c();电离产生H+使溶液显酸性;水解产生OH-,使溶液显碱性。由于其水解作用大于电离作用,最终达到平衡时,溶液中c(OH-)>c(H+),但盐水解程度是微弱的,主要以盐电离产生的离子存在,所以c()>c(OH-);溶液中的H+除会电离产生,还有H2O电离产生,而只有电离产生,故离子浓度:c(H+)>c(),因此该溶液中各种离子浓度由大到小的顺序为:c(Na+)>c()>c(OH-)>c(H+)>c();

(2)在0.1mol•L-1的NaHR溶液中,存在HR-的电离作用:HR-R2-+H+,电离产生H+使溶液显酸性,同时也存在着水解中:HR-+H2OH2R+OH-,水解产生OH-,使溶液显碱性,其平衡常数Kh=<Ka2=5.60×10-8,说明HR-的电离作用大于水解作用;因此NaHR溶液显酸性;

(3)AlCl3是强酸弱碱盐,在溶液中会发生水解作用:AlCl3+3H2OAl(OH)3+3HCl,导致溶液变浑浊,由于水解产生HCl,因此根据平衡移动原理,若用固体配制溶液时,将其溶解在一定量的浓盐酸中,增加了H+的浓度,就可以抑制盐的水解,然后再加水稀释,就可以得到澄清溶液;若将AlCl3溶液蒸干,水解平衡正向进行直至水解完全,HCl挥发逸出,得到的固体是Al(OH)3,然后将固体灼烧至恒重,Al(OH)3分解产生Al2O3和H2O,最后得到的固体是Al2O3;

(4)氯化银在水中存在沉淀溶解平衡:AgCl(s)Ag+(aq)+Cl-(aq);Ag+、Cl-都会抑制物质的溶解,溶液中Ag+、Cl-浓度越大;其抑制AgCl溶解的程度就越大。

①100mL0.1mol•L-1盐酸中c(Cl-)=0.1mol/L;

②100mL0.2mol•L-1AgNO3溶液中c(Ag+)=0.2mol/L;

③100mL0.1mol•L-1氯化铝溶液中c(Cl-)=0.1mol/L×3=0.3mol/L;

④100mL蒸馏水中不含Cl-、Ag+;对氯化银在水中溶解无抑制作用。

它们抑制AgCl溶解程度③>②>①>④,AgNO3溶液中含有Ag+,该溶液中含有的c(Ag+)最大;则这四种液体物质中银离子浓度由大到小的顺序是:②>④>①>③;

③中c(Cl-)=0.3mol/L,由于AgCl的溶度积常数Ksp=c(Ag+)·c(Cl-)=1.8×10-10,则该溶液中c(Ag+)==6.0×10-10mol/L。【解析】c(Na+)>c()>c(OH-)>c(H+)>c()酸将AlCl3(s)溶解在较浓的盐酸中,然后加水稀释Al2O3②>④>①>③6.0×10-10四、结构与性质(共4题,共28分)18、略

【分析】【分析】

根据Cr原子的电子排布式,写出基态价电子的排布式;根据Cr原子失去一个电子后价电子排布情况判断铬的第二电离能大于锰的第二电离能;根据题中结构判断存在化学键类型;根据VSEPR理论判断中心原子杂化方式和空间构型;根据等电子体的概念写出一种与互为等电子体的分子;根据形成氢键和相似相溶原理解释乙醇能与水以任意比例互溶;根据题中晶胞的结构;利用“均摊法”进行晶胞的相关计算;据此解答。

(1)

Cr是24号元素,核外有24个电子,其核外电子排布式为1s22s22p63s23p63d54s1,价电子排布式为3d54s1,答案为3d54s1。

(2)

因为铬原子失去1个电子后,价电子层电子排布式为属于半充满,相对稳定,即铬的第二电离能是失去半充满3d5上的电子,锰的第二电离能是失去3d6上的电子变为半充满状态,所以金属铬的第二电离能大于锰的第二电离能答案为铬原子失去1个电子后,价电子层电子排布式为属于半充满,相对稳定。

(3)

①由可知,该结构中存在N-H键是键,N=C双键、C=S双键中有键、键,Cr3+与配体间形成配位键;ABD符合题意;答案为ABD。

②由可知,NCS-的中心原子C原子形成2个双键,NCS-为直线形结构,C原子采取sp杂化;因为NCS-结构中,N、S均有孤电子对,均可与Cr3+形成配位键;答案为sp杂化;N;S。

③的价层电子对数=4+=4+0=4,无孤电子对,的空间构型为正四面体结构;根据原子总数相等、价电子总数也相等的微粒互为等电子体,则的等电子体的分子为CH4;答案为4;正四面体;CH4。

④CH3CH2OH与水分子间能形成氢键,并且都是极性分子,根据相似相溶原理,所以CH3CH2OH能与水以任意比互溶;答案为乙醇可与水形成分子间氢键;乙醇属于极性分子。

(4)

由可知,晶胞中Cr原子数目=8×+4×=2,Se原子位于晶胞内,数目=2,故晶胞质量m=2×g=g,晶胞的体积V=a×10-7cm×a×10-7cm×b×10-7cm=a2b×10-21cm3,则晶体密度ρ===答案为【解析】(1)

(2)铬原子失去1个电子后,价电子层电子排布式为属于半充满,相对稳定。

(3)ABDsp杂化S、N4正四面体形乙醇可与水形成分子间氢键乙醇属于极性分子。

(4)19、略

【分析】【分析】

根据Fe的原子序数,结合核外电子排布规则写出Fe的电子排布式;根据晶胞的结构,利用“均摊法”进行晶胞的有关计算;根据同主族元素性质递变规律解释H、Li、Na的第一电离能的关系;根据NH3分子与H2O分子之间会形成氢键解释NH3极易溶于水的原因;根据NH3极易溶于水,CO2在水中溶解度不大,解释侯氏制碱法先通入NH3再通入CO2;根据VSEPR理论,判断其空间结构和杂化类型;根据形成配位健的条件判断提供空轨道的原子;根据NH3BH3(氨硼烷)分子间形成氢键判断其熔点较高;据此解答。

(1)

①Fe元素的原子序数为26,核外有26个电子,根据核外电子排布规则,基态Fe原子的电子排布式为1s22s22p63s23p63d64s2或[Ar]3d64s2;答案为1s22s22p63s23p63d64s2或[Ar]3d64s2;

②由晶胞的结构可知,图1结构中,Fe位于顶点和体心,Fe原子的个数为8×+1=2,图2结构中,Fe位于顶点和面心,Fe原子的个数为8×+6×=4,则两种晶胞所含铁原子个数比为2:4=1:2;又图1晶胞的棱长为apm(1pm=1×10-10cm),其体积为V=(a×10-10cm)3,晶胞的质量为m==其密度ρ===g·cm-3;答案为1:2;

③第一电离能(I1)为I1(H)>I1(Li)>I1(Na);原因是H;Li、Na位于同一主族,价电子数相同,自上而下,原子半径逐渐增大,原子核对外层电子的有效吸引作用逐渐减弱,失电子能力增强,第一电离能逐渐减小;答案为H、Li、Na位于同一主族,价电子数相同,自上而下,原子半径逐渐增大,原子核对外层电子的有效吸引作用逐渐减弱,失电子能力增强,第一电离能逐渐减小;

(2)

①NH3极易溶于水的原因是NH3与H2O分子间能形成氢键;答案为NH3与H2O分子间能形成氢键;

②因为二氧化碳在水中溶解度不大,氨气极易溶于水,饱和氨盐水显碱性,比饱和食盐水更容易吸收二氧化碳,所以要先向饱和食盐水中通入氨气,制成饱和氨盐水,再向其中通入二氧化碳即反应时,向饱和NaCl溶液中先通入氨气,再通入二氧化碳;答案为NH3;

③中中心原子C原子的价层电子对个数=3+=3+0=3,且无孤电子对,采取sp2杂化;其空间结构为平面三角形;答案为平面三角形;

(3)

①NH3分子中中心原子N原子的价层电子对个数=3+=3+1=4,且含有一个孤电子对,所以中心原子N原子的杂化轨道类型为sp3杂化;答案为sp3;

②在NH3BH3结构中;N原子存在孤电子对,B原子为缺电子原子,在配位键的形成中B原子提供空轨道;答案为B;

③NH3BH3(氨硼烷)与CH3CH3互为等电子体,由于NH3BH3分子中N原子的电负性较大,分子间会形成氢键,所以NH3BH3熔点高于CH3CH3;答案为>。【解析】(1)1s22s22p63s23p63d64s2或[Ar]3d64s21:2H;Li、Na位于同一主族;价电子数相同,自上而下,原子半径逐渐增大,原子核对外层电子的有效吸引作用逐渐减弱,失电子能力增强,第一电离能逐渐减小。

(2)NH3与H2O分子间能形成氢键NH3平面三角形。

(3)sp3B>20、略

【分析】【详解】

(1)Cu位于第四周期IB族,其Cu2+的价电子排布式为3d9;

(2)A、[Cu(NH3)4]2+与SO42-之间存在离子键,Cu2+和NH3之间存在配位键;N和H之间存在极性共价键,故A正确;

B;该化合物中第一电离能最大的是N元素;故B错误;

C、外界离子为SO42-,根据价层电子对互斥理论,SO42-的空间构型为正四面体形;故C正确;

答案选AC;

(3)SO32-中心原子S有3个σ键,孤电子对数=1,价层电子对数为4,杂化轨道数等于价层电子对数,即SO32-中S的杂化类型为sp3;SO32-空间构型为三角锥形;

(4)根据等电子体的概念,与SO3互为等电子体的分子为BF3等;

(5)利用均摊的方法进行判断,根据晶胞的结构,O位于顶点、面心、棱上和内部,属于晶胞的氧原子的个数为=4,Cu位于内部,有4个,即化学式为CuO。【解析】①.3d9②.AC③.sp3④.三角锥形⑤.BF3⑥.CuO21、略

【分析】【详解】

I.(1)基态N原子中电子在2p轨道上的排布遵循的原则是洪特规则,N2F2分子结构式为F-N=N-F,分子中N原子含有1对孤对电子,N原子的杂化方式是sp2杂化,lmolN2F2含有3molσ键,即3NA或1.806×1024个σ键;

(2)Si3N4晶体中Si原子周围有4个N原子,Si原子为sp3杂化,N-Si-N键角为109°28′,N原子周围连接3个Si原子,含有1对孤对电子,N原子为sp3杂化;但孤对电子对成键电子对的排斥作用更大,使得Si-N-Si键角小于109°28′;

II.(1)Fe位于第四周期第VIII族;

(2)Fe(CO)x晶体的熔沸点较低;所以属于分子晶体;Fe原子价电子数是8,每个CO分子提供一个电子对,所以8+2n=18,n=5;

(3)极性分子的熔沸点较高,CO是极性分子,氮气是非极性分子,所以CO熔沸点较高;

(4)①铜为29号元素,基态铜原子的核外电子排布式为[Ar]3d104s1或1s22s22p63s23p63d104s1;

②根据晶胞结构图可知,铜为面心立方堆积,每个铜原子周围距离最近的铜原子数目=3×8÷2=12;

(5)某M原子的外围电子排布式为3s23p5,则M为Cl元素;该晶胞中Cu原子个数为4,Cl原子个数=8×+6×=4,晶体体积=cm3=cm3=cm3,根据晶胞的结构可知,铜原子和M原子之间的最短距离为立方体体对角线的=××cm=pm。

点睛:把握常见分子中原子的杂化及空间构型为解答的关键,根据价层电子对互斥理论确定分子空间构型及中心原子杂化方式,价层电子对个数=σ键个数+孤电子对个数,σ键个数=配原子个数,孤电子对个数=(a-xb),a指中心原子价电子个数,x指配原子个数,b指配原子形成稳定结构需要的电子个数.根据n值判断杂化类型:一般有如下规律:当n=2,sp杂化;n=3,sp2杂化;n=4,sp3杂化;中心原子的杂化类型为sp2,说明该分子中心原子的价层电子对个数是3,无孤电子对数,空间构型是平面三角形。【解析】洪特规则sp2杂化3NASi3N4晶体中Si原子周围有4个N原子,Si为sp3杂化,N—Si—N的键角为109028/,而N原子周围只有3个Si原子。虽N原子也是sp3杂化,但由于孤电子对对成键电子对的排斥力更强,故Si—N—Si的键角小于109028/。第四周期第Ⅷ族分子晶体5CO[Ar]3d104s112五、有机推断题(共1题,共10分)22、略

【分析】【分析】

化合物A分子式是C7H8,结构简式是根据物质反应过程中碳链结构不变,结合D分子结构及B、C转化关系,可知B是B发生催化氧化反应产生C是C与Br2在光照条件下发生甲基上的取代反应产生D是D与HCHO发生信息反应产生的分子式是C9H8O2的E是:E与I2反应产生F是:F与NaOH的乙醇溶液共热,发生消去反应产生G:然后结合物质性质逐一分析解答。

【详解】

根据上述分析可知A是B是C是D是E是F是G是

(1)反应①是与O2在催化剂存在的条件下加热,发生氧化反应产生故该反应的类型为氧化反应;

(2)反应②是与Br2在光照条件下发生甲基上的取代反应产生故所需试剂和条件是Br2;光照;

(3)B结构简式是含有的官能团是醛基-CHO,检验其存在的方法是:取样,滴加少量新制的Cu(OH)2悬浊液;加热煮沸,若产生砖红色沉淀,就说明物质分子中含有醛基;

(4)根据上述推断可知E的结构简式是

(5)F是与NaOH乙醇溶液共热,发生消去反应产生G:则F→G的化学方程式为:+NaOHNaI+H2O+

(6)化合物C是C的同分异构体满足下列条件:①能发生银镜反应,说明分子中含有-CHO;②能发生水解反应,说明含有酯基;③含苯环;④含有5个化学环境不同的H原子,则其可能的结构简式是

(7)CH2=CH2与HBr在一定条件下发生加成反应产生CH3-CH2Br,CH3-CH2Br与CH3CHO发生信息反应产生CH3CH=CHCH3,CH3CH=CHCH3在一定条件下发生加聚反应产生聚2-丁烯,故合成路线为:CH2=CH2CH3-CH2BrCH3CH=CHCH3【解析】氧化反应Br2、光照取样,滴加少量新制的Cu(OH)2悬浊液,加热煮沸,若产生砖红色沉淀,说明含有醛基+NaOHNaI+H2O+CH2=CH2CH3-CH2BrCH3CH=CHCH3六、原理综合题(共3题,共9分)23、略

【分析】【分析】

【详解】

(1)由图1知①结合②所以

(2)根据图2知,当温度为15℃时,次氯酸钙对甲醛的去除率更高,所以选择Ca(ClO)2;

(3)①根据图3,当压强为p1时,CO的平衡转化率随温度的升高而降低,即温度升高,平衡逆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论