版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年沪科版高一数学上册月考试卷726考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、【题文】已知全集集合则=__________.A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}2、【题文】已知直线a、b、c与平面α.给出:
①a⊥c,b⊥ca∥b;②a∥c,b∥ca∥b;③a∥α,b∥αa∥b;④a⊥α,b⊥αa∥b.其中正确命题的个数是()A.1B.2C.3D.43、根据某组调查数据制作的频率分布直方图如图所示;则该组数据中的数位于区间(60,70)内的频率是()
A.0.004B.0.04C.0.44D.44、如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,半径长度为2,则该几何体的表面积是()A.17πB.18πC.20πD.28π5、已知函数f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是()A.(0,1)B.(0,)C.[)D.()6、一图形的投影是一条线段,这个图形不可能是()A.线段B.直线C.圆D.梯形评卷人得分二、填空题(共8题,共16分)7、执行如图所示的程序框图,若输入x=10,则输出y的值为_____.8、.如图,是半径为1的圆的直径,是边长为1的正三角形,则的最大值为.9、【题文】在正方体中,面对角线与体对角线所成角等于。
_______________10、【题文】如果那么的最小值是________11、【题文】将一块边长为cm的正方形剪去4个角(4个全等的小正方形)做成一个无盖铁盒,则铁盒的容积(cm3)与剪去的小正方形的边长(cm)的函数关系式是____,其定义域为____.12、若关于x的方程x2+(2﹣m2)x+2m=0的两根一个比1大一个比1小,则m的范围是____13、已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是____.14、△ABC中,cosA=cosB=则cosC=____.评卷人得分三、证明题(共6题,共12分)15、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.16、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.17、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.
(1)求证:E为的中点;
(2)若CF=3,DE•EF=,求EF的长.18、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.19、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.20、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.评卷人得分四、计算题(共3题,共6分)21、若,则=____.22、如图,∠1=∠B,AD•AC=5AE,DE=2,那么BC•AD=____.23、设集合A={5,log2(a+3)},集合B={a,b},若A∩B={2},求集合B.评卷人得分五、作图题(共4题,共40分)24、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.25、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.26、画出计算1++++的程序框图.27、已知简单组合体如图;试画出它的三视图(尺寸不做严格要求)
评卷人得分六、综合题(共3题,共18分)28、已知二次函数y=x2-2mx-m2(m≠0)的图象与x轴交于点A;B,它的顶点在以AB为直径的圆上.
(1)证明:A;B是x轴上两个不同的交点;
(2)求二次函数的解析式;
(3)设以AB为直径的圆与y轴交于点C,D,求弦CD的长.29、如图1;△ABC与△EFA为等腰直角三角形,AC与AE重合,AB=EF=9,∠BAC=∠AEF=90°,固定△ABC,将△EFA绕点A顺时针旋转,当AF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设AE;AF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图2.
(1)问:在图2中,始终与△AGC相似的三角形有____及____;
(2)设CG=x;BH=y,GH=z,求:
①y关于x的函数关系式;
②z关于x的函数关系式;(只要求根据第(1)问的结论说明理由)
(3)直接写出:当x为何值时,AG=AH.30、已知直线l1:x-y+2=0;l2:x+y-4=0,两条直线的交点为A,点B在l1上,点C在l2上,且,当B,C变化时,求过A,B,C三点的动圆形成的区域的面积大小为____.参考答案一、选择题(共6题,共12分)1、C【分析】【解析】
试题分析:因为(={0,4},所以={0,2,4};故选C.
考点:集合的运算.【解析】【答案】C2、B【分析】【解析】②④为真命题.【解析】【答案】B3、C【分析】【解答】解:由样本的频率分布直方图知:
数据在区间(60;70)上的频率是0.040×10=0.4;
故选:C.
【分析】根据频率=组距×即可求出答案.4、A【分析】【解答】解:由三视图知,该几何体的直观图如图所示:
该几何体是一个球被切掉左上角的八分之一;
即该几何体是八分之七个球;
球半径R=2;
所以它的表面积是八分之七的球面面积和三个扇形面积之和;
即×4π×22+×π×22=17π;
故选A.
【分析】由三视图画出该几何体的直观图,分析可得该几何体是一个球被切掉左上角的八分之一,它的表面积是八分之七的球面面积和三个扇形面积之和,进而得到答案.5、C【分析】解:∵函数f(x)=是(-∞;+∞)上的减函数;
∴求得≤a<
故选:C.
利用分段函数以及函数的单调性;列出不等式组,求得a的范围.
本题主要考查函数的单调性的性质,指数函数、一次函数的单调性,属于基础题.【解析】【答案】C6、B【分析】解:线段;圆、梯形都是平面图形;且在有限范围内,投影都可能为线段.长方体是三维空间图形,其投影不可能是线段;直线的投影,只能是直线或点.
故选:B.
本题考查投影的概念;由于图形的投影是一个线段,根据平行投影与中心投影的规则对选项中几何体的投影情况进行分析找出正确选项.
本题考查平行投影及平行投影作图法,解题的关键是熟练掌握并理解投影的规则,由投影的规则对选项作出判断,得出正确选项.【解析】【答案】B二、填空题(共8题,共16分)7、略
【分析】试题分析:当x=10时,执行语句:然后判断再执行赋值语句:即第二次循环:执行语句:然后判断再执行赋值语句:即第三次循环:执行语句:然后判断再执行赋值语句:即第四次循环:执行语句:然后判断直接输出.故应填.考点:程序框图;循环结构.【解析】【答案】.8、略
【分析】试题分析:从而设故当最大值.考点:1.向量线性运算2.三角公式综合应用.【解析】【答案】9、略
【分析】【解析】
试题分析:根据题意,由于正方体中,面对角线与体对角线所成角利用线面垂直的判定定理和性质定理,那么可知垂直于故等于
考点:异面直线的所成的角。
点评:主要是考查了异面直线的所成的角的求解,属于基础题。【解析】【答案】10、略
【分析】【解析】略【解析】【答案】1811、略
【分析】【解析】略【解析】【答案】12、m>3或m<﹣1【分析】【解答】解:令f(x)=x2+(2﹣m2)x+2m;由题意,其图象应为。
故有f(1)<0,即1+2﹣m2+2m<0
整理得m2﹣2m﹣3>0
解得m>3或m<﹣1
故答案为m>3或m<﹣1
【分析】本题宜用相关函数的图象进行转化,令f(x)=x2+(2﹣m2)x+2m,作出其图象,从图象上可心看出只要f(1)<0,即可保证x的方程x2+(2﹣m2)x+2m=0的两根一个比1大一个比1小.13、(﹣1,3)【分析】【解答】解:∵偶函数f(x)在[0;+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2);
即f(|x﹣1|)>f(2);
∴|x﹣1|<2;
解得﹣1<x<3;
故答案为:(﹣1;3)
【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.14、【分析】【解答】解:在△ABC中,由cosA=cosB=可知A,B均为锐角,则
sinB=
∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=.
故答案为:.
【分析】由已知求出sinA,sinB的值,由cosC=﹣cos(A+B),然后展开两角和的余弦求解.三、证明题(共6题,共12分)15、略
【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四点共圆.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.16、略
【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
从而四边形OBFC为平行四边形;
所以BM=MC.17、略
【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE
OA=OE=>∠OAE=∠OEA
DE切圆O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
⇒OE∥AD
=>E为的中点.
(2)解:连CE;则∠AEC=90°,设圆O的半径为x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圆O于E=>△FCE∽△FEA
∴,
∴
即DE•EF=AD•CF
DE•EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC•FA=3x(3+2)=15
∴EF=18、略
【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;
由图知:∠FDC是△ACD的一个外角;
则有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四边形ABCD是圆的内接四边形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分别是∠AFB、∠AED的角平分线;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)连接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可证得∠NEX=∠MEX;
故FX、EX分别平分∠MFN与∠MEN.19、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.20、略
【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四边形GBFC是平行四边形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵过A;G的圆与BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四点共圆;
∴GA;GF=GC•GD;
即GA2=GC•GD.四、计算题(共3题,共6分)21、略
【分析】【分析】先判断a与1的大小,再去掉根号进行计算即可.【解析】【解答】解:∵;
∴a<1;
∴=
=1-a
=1-2+
=-1.
故答案为-1.22、略
【分析】【分析】根据∠1=∠B,∠A=∠A判断出△AED∽△ACB,根据相似三角形的性质,列出比例式:,则,可求得AD•AC=AE•AB,有根据AD•AC=5AE,求出AB=5,再根据△AED∽△ACB,列出比例式=,可求出AD•BC=AB•ED=5×2=10.【解析】【解答】解:∵∠1=∠B;∠A=∠A;
∴△AED∽△ACB;
∴;
即AD•AC=AE•AB;
又∵AD•AC=5AE;
可得AB=5;
又知=;
可得AD•BC=AB•ED=5×2=10.
故答案为10.23、A∩B={2};∴2∈A;
又∵A={5,log2(a+3)};
∴2=log2(a+3);∴4=a+3,∴a=1
又∵B={a,b}={1,b},且2∈B,∴b=2;
∴B={1;2}
【分析】【分析】由题意2∈A,2=log2(a+3),求出a,然后确定b,即可解得集合B五、作图题(共4题,共40分)24、略
【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.
∵点A与点A′关于CD对称;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:铺设管道的最省费用为10000元.25、略
【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.
∵点A与点A′关于CD对称;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:铺设管道的最省费用为10000元.26、解:程序框图如下:
【分析】【分析】根据题意,设计的程序框图时需要分别设置一个累加变量S和一个计数变量i,以及判断项数的判断框.27、
解:几何体的三视图为:
【分析】【分析】利用三视图的作法,画出三视图即可.六、综合题(共3题,共18分)28、略
【分析】【分析】(1)求出根的判别式;然后根据根的判别式大于0即可判断与x轴有两个交点;
(2)利用根与系数的关系求出AB的长度;也就是圆的直径,根据顶点公式求出顶点的坐标得到圆的半径,然后根据直径是半径的2倍列式即可求出m的值,再把m的值代入二次函数解析式便不难求出函数解析式;
(3)根据(2)中的结论,求出圆的半径,弦心距,半弦,然后利用勾股定理列式求出半弦长,弦CD的长等于半弦的2倍.【解析】【解答】解:(1)证明:∵y=x2-2mx-m2(m≠0);
∴a=1,b=-2m,c=-m2;
△=b2-4ac=(-2m)2-4×1×(-m2)=4m2+4m2=8m2;
∵m≠0;
∴△=8m2>0;
∴A;B是x轴上两个不同的交点;
(2)设AB点的坐标分别为A(x1,0),B(x2;0);
则x1+x2=-=-=2m,x1•x2==-m2;
∴AB=|x1-x2|===2;
-=-=m;
==-2m2;
∴顶点坐标是(m,-2m2);
∵抛物线的顶点在以AB为直径的圆上;
∴AB=2(2m2);
即2=2(2m2);
解得m2=;
∴m=±;
∴y=x2-2×x-=x2-x-,或y=x2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度OEM高端音响设备OEM生产协议范本2篇
- 二零二五年度多功能大棚使用权转让与维护协议3篇
- 2025年度环保产业项目委托合同标准示范3篇
- 二零二五年度体育用品OEM制造与品牌推广合同2篇
- 2024年资金借出合同样本
- 2025版高新技术产业园区建设贷款合同3篇
- 二零二五年度反担保动产质押科技创新合作合同3篇
- 2024版供热站综合运维服务合同范例版B版
- 2025年度知识产权许可使用合同(商标权)3篇
- 2025版企业员工调岗调薪劳动合同范本153篇
- 浙江省宁波市慈溪市2023-2024学年高二上学期期末考试 数学 含解析
- 代理记账有限公司简介(5个范本)
- 1646 法律职业伦理
- 2024年安徽安庆宜秀区国企业招聘易考易错模拟试题(共500题)试卷后附参考答案
- 8年级上册(人教版)物理电子教材-初中8~9年级物理电子课本
- 不动产登记申请表
- 2024年中国中铁十局招聘高频难、易错点500题模拟试题附带答案详解
- 项目资金管理统筹实施方案
- 高中英语新课程标准解读课件
- 国家开放大学电大《金融市场》教学考一体化网考形考试题及答案-图文
- 政治-经济与社会 教材探究与分享参考答案高中政治统编版必修二
评论
0/150
提交评论