2024年统编版2024高一数学下册阶段测试试卷_第1页
2024年统编版2024高一数学下册阶段测试试卷_第2页
2024年统编版2024高一数学下册阶段测试试卷_第3页
2024年统编版2024高一数学下册阶段测试试卷_第4页
2024年统编版2024高一数学下册阶段测试试卷_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年统编版2024高一数学下册阶段测试试卷888考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、在区间上随机取一个的值介于与之间的概率为()(A)(B)(C)(D)2、下列四个命题中正确的是()①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.A.①和②B.②和③C.③和④D.②和④3、【题文】若实数满足则是的函数的图象大致是()4、【题文】已知直线x+ay+6=0和(a-2)x+3y+2a=0,则∥的充要条件是a=()A.3B.1C.-1D.3或-15、函数是()A.奇函数,且在上是增函数B.奇函数,且在上是减函数C.偶函数,且在上是增函数D.偶函数,且在上是减函数6、已知平面向量且则t=()A.-1B.1C.3D.-3评卷人得分二、填空题(共6题,共12分)7、有一个容量为66的样本;数据的分组及各组的频数如下:

根据样本的频率分布估计,大于或等于31.5的数据约占总体的____.8、已知与函数的图象有两个交点,则实数的取值范围是_________.9、在△ABC中,B=60°,a=1,c=2,则△ABC的面积是____.10、两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图1中的实心点个数1,5,12,22,,被称为五角形数,其中第1个五角形数记作第2个五角形数记作第3个五角形数记作第4个五角形数记作,若按此规律继续下去,则____,若则____.15122211、设数列{an}是首项为1,公比为-3的等比数列a1+|a2|+a3+|a4|+a5=______.12、用辗转相除法求240

和288

的最大公约数时,需要做______次除法;利用更相减损术求36

和48

的最大公约数时,需要进行______次减法.评卷人得分三、证明题(共7题,共14分)13、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.14、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.15、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.16、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.

求证:(1)∠CFD=∠CAD;

(2)EG<EF.17、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面积S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.18、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.19、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.评卷人得分四、作图题(共4题,共24分)20、作出下列函数图象:y=21、作出函数y=的图象.22、画出计算1++++的程序框图.23、绘制以下算法对应的程序框图:

第一步;输入变量x;

第二步,根据函数f(x)=

对变量y赋值;使y=f(x);

第三步,输出变量y的值.评卷人得分五、计算题(共3题,共21分)24、(2002•宁波校级自主招生)如图,E、F分别在AD、BC上,EFCD是正方形,且矩形ABCD∽矩形AEFB,则BC:AB的值是____.25、(2005•兰州校级自主招生)已知四边形ABCD是正方形,且边长为2,延长BC到E,使CE=-,并作正方形CEFG,(如图),则△BDF的面积等于____.26、设集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.若A∩B={2},求实数a的值.评卷人得分六、综合题(共1题,共8分)27、如图,已知:⊙O1与⊙O2外切于点O,以直线O1O2为x轴,点O为坐标原点,建立直角坐标系,直线AB切⊙O1于点B,切⊙O2于点A,交y轴于点C(0,2),交x轴于点M.BO的延长线交⊙O2于点D;且OB:OD=1:3.

(1)求⊙O2半径的长;

(2)求线段AB的解析式;

(3)在直线AB上是否存在点P,使△MO2P与△MOB相似?若存在,求出点P的坐标与此时k=的值,若不存在,说明理由.参考答案一、选择题(共6题,共12分)1、A【分析】试题分析:在区间上随机取一个试验结果构成的长度为当的值介于与之间,长度为有几何概型的概率计算公式当考点:几何概型的概率计算公式.【解析】【答案】A2、D【分析】试题分析:①对这两条直线缺少“相交”这一限制条件,故错误;③中缺少“平面内”这一前提条件,故错误.考点:空间中线面的位置关系的判定.【解析】【答案】D3、B【分析】【解析】因为先化简函数的解析式,函数中含有绝对值,故可去绝对值讨论,当x≥0时,函数在给定区间上递减,又因为f(x)为偶函数,故可选出答案B.【解析】【答案】B4、C【分析】【解析】分析:首先由两直线平行可得1×3=a×(a-2),解可得a=-1或3,分别验证可得a=-1时,则l1∥l2,即可得l1∥l2?a=-1;反之将a=-1代入直线的方程,可得l1∥l2,即有a=-1?l1∥l2;综合可得l1∥l2?a=-1;即可得答案.

解答:解:根据题意,若l1∥l2;则有1×3=a×(a-2),解可得a=-1或3;

反之可得,当a=-1时,直线l1:x-y+6=0,其斜率为1,直线l2:-3x+3y-2=0,其斜率为1,且l1与l2不重合,则l1∥l2;

当a=3时,直线l1:x+3y+6=0,直线l2:x+3y+6=0,l1与l2重合,此时l1与l2不平行;

l1∥l2?a=-1;

反之,a=-1?l1∥l2;

故l1∥l2?a=-1;

故选C.【解析】【答案】C5、A【分析】【解答】易知f(x)的的定义域为R,又所以f(x)是奇函数;又因为在R上都是单调递增函数,所以也是R上的单调递增函数;故选A。

【分析】此题主要考查函数单调性的判断,属于基础题型。6、B【分析】解:∵平面向量且

∴=3t-3=0;

解得t=1.

故选:B.

利用向量垂直的性质直接求解.

本题考查实数值的求法,考查平面向量垂直的性质,考查推理论证能力、运算求解能力,是基础题.【解析】【答案】B二、填空题(共6题,共12分)7、略

【分析】

由图表可知;大于或等于31.5的数据为12+7+3=22.

而样本容量为66.

所以大于或等于31.5的数据约占总体的.

故答案为

【解析】【答案】由图表直接查出样本中大于或等于31.5的数据;由该数据除以样本容量得到样本中大于或等于31.5的数据约占总体比值.

8、略

【分析】试题分析:与函数的图象有两个交点,转化为方程有两个相异实根,即有两个相异实根,进而转化为与函数的图象有两个交点,作的图象(如图),则或即或考点:函数与方程及数形结合思想.【解析】【答案】或9、略

【分析】

因为△ABC中;B=60°,a=1,c=2;

则△ABC的面积是S===.

故答案为:

【解析】【答案】直接利用三角形的面积公式S=求解即可.

10、略

【分析】将图中的小石子分组,分组方法如图所示1+(3*1+1)+(3*2+1)+(3*3+1)++【3*(n-1)+1】=a(n)=145时,n=10.【解析】【答案】35,1011、略

【分析】解:∵数列{an}是首项为1;公比为-3的等比数列;

∴an=a1•qn-1=(-3)n-1;

∴a1=1,a2=-3,a3=9,a4=-27,a5=81;

∴则a1+|a2|+a3+|a4|=1+3+9+27+81=121.

故答案是:121.

根据条件求得等比数列的通项公式,从而求得a1+|a2|+a3+|a4|+a5的值.

本题主要考查等比数列的定义、通项公式,属于基础题.【解析】12112、略

【分析】解:隆脽288=240隆脕1+48

240=48隆脕5

故240

和288

的最大公约数为48

在求解过程中共进行了2

次除法运算;

48鈭�36=1236鈭�12=2424鈭�12=12

利用更相减损术求36

和48

的最大公约数时,需要进行3

次减法.

故答案为:23

利用辗转相除法求出240

和288

的最大公约数;统计除法的次数可得答案.

利用更相减损术求36

和48

的最大公约数统计减法的次数可得答案.

本题考查了辗转相除法,考查了更相减损术,熟练掌握辗转相除法的运算法则,是解答的关键,本题难度不大,属于基础题.【解析】23

三、证明题(共7题,共14分)13、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.14、略

【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;

(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F为AC中点;

∴cosC==.

答:cosC的值是.

(3)BF过圆心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.15、略

【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四边形GBFC是平行四边形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵过A;G的圆与BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四点共圆;

∴GA;GF=GC•GD;

即GA2=GC•GD.16、略

【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;

(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

则=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四点共圆;

∴∠CFD=∠CAD.

(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四点共圆;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.17、略

【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;

(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;

则CE=AC•sin(α+β)=bsin(α+β);

∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根据题意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB•ACsin(α+β)=BD•AD+CD•AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.18、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.19、略

【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;

则AC=AE;AB=5DE;

又∵G是AB的中点;

∴AG=ED.

∴ED2=AF•AE;

∴5ED2=AF•AE;

∴AB•ED=AF•AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.四、作图题(共4题,共24分)20、【解答】幂函数y={#mathml#}x32

{#/mathml#}的定义域是[0;+∞),图象在第一象限,过原点且单调递增,如图所示;

【分析】【分析】根据幂函数的图象与性质,分别画出题目中的函数图象即可.21、【解答】图象如图所示。

【分析】【分析】描点画图即可22、解:程序框图如下:

【分析】【分析】根据题意,设计的程序框图时需要分别设置一个累加变量S和一个计数变量i,以及判断项数的判断框.23、解:程序框图如下:

【分析】【分析】该函数是分段函数,当x取不同范围内的值时,函数解析式不同,因此当给出一个自变量x的值时,必须先判断x的范围,然后确定利用哪一段的解析式求函数值,因为函数解析式分了三段,所以判断框需要两个,即进行两次判断,于是,即可画出相应的程序框图.五、计算题(共3题,共21分)24、略

【分析】【分析】根据相似多边形对应边的比相等,设出原来矩形的长与宽,就可得到一个方程,解方程即可求得.【解析】【解答】解:根据条件可知:矩形AEFB∽矩形ABCD.

∴.

设AD=x;AB=y,则AE=x-y.

∴x:y=1:.

即原矩形长与宽的比为1:.

故答案为:1:.25、略

【分析】【分析】根据正方形的性质可知三角形BDC为等腰直角三角形,由正方形的边长为2,表示出三角形BDC的面积,四边形CDFE为直角梯形,上底下底分别为小大正方形的边长,高为小正方形的边长,利用梯形的面积公式表示出梯形CDFE的面积,而三角形BEF为直角三角形,直角边为小正方形的边长及大小边长之和,利用三角形的面积公式表示出三角形BEF的面积,发现四边形CDEF的面积与三角形EFB的面积相等,所求△BDF的面积等于三角形BDC的面积加上四边形CDFE的面积减去△EFB的面积即为三角形BDC的面积,进而得到所求的面积.【解析】【解答】解:∵四边形ABCD是正方形;边长为2;

∴BC=DC=2;且△BCD为等腰直角三角形;

∴△BDC的面积=BC•CD=×2×2=2;

又∵正方形CEFG;及正方形ABCD;

∴EF=CE;BC=CD;

由四边形CDFE的面积是(EF+CD)•EC,△EFB的面积是(BC+CE)•EF;

∴四边形CDFE的面积=△EFB的面积;

∴△BDF的面积=△BDC的面积+四边形CDFE的面积-△EFB的面积=△BDC的面积=2.

故答案为:2.26、解:由x2﹣3x+2=0,得x=1或x=2;

故集合A={1;2}.

∵A∩B={2},∴2∈B,代入B中的方程,得a2+4a+3=0⇒a=﹣1或a=﹣3;

当a=﹣1时,B={x|x2﹣4=0}={﹣2;2},满足条件;

当a=﹣3时,B={x|x2﹣4x+4=0}={2};满足条件;

综上;知a的值为﹣1或﹣3.

【分析】【分析】先化简集合A,再由A∩B={2}知2∈B,将2代入x2+2(a+1)x+(a2﹣5)=0解决.六、综合题(共1题,共8分)27、略

【分析】【分析】(1)连接BO1,DO2,O2A作O1N⊥O2A于N,连接OA,根据切线长定理求出AB的长,设O1B为r,根据勾股定理得到方程(4r)2-(2r)2=42;求出方程的解即可;

(2)求出∠CMO=∠NO1O2=30°,求出OM,设AB的解析式是y=kx+b;把C;M的坐标代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论