Spc制程质量衡量方式的演进培训课程_第1页
Spc制程质量衡量方式的演进培训课程_第2页
Spc制程质量衡量方式的演进培训课程_第3页
Spc制程质量衡量方式的演进培训课程_第4页
Spc制程质量衡量方式的演进培训课程_第5页
已阅读5页,还剩86页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

制程质量衡量方式的演进

常态分布mo0(%)Ca/Cp/Cpk(ppm)

185019241960

高斯W.AShewhart日本

美国

概述

◎统计方法的定义:资料的收集、整理

与解释,并导出结

论或加以推广。

◎资料种类:计数值(间断资料,Discrete

Data)

计量值(连续资料,

ContinuousData)

◎资料来源:原材料

制程(制程参考)

检验(产品特性)

群体与样本

统计技术之应用

1.市场分析

2.产品设计

3.相依性规格、寿命及耐用性预测

4.制程管制及制程能力研究

5.制程改善

6.安全评估/风险分析

7.验收抽样

8.数据分析,绩效评估及不良分析

SPC使用之统计技术

1.柏拉图(决定管制重点)

2.统计检定

3.管制图

4.抽样计划

5.变异数分析/回归分析

制程管制系统

制程管制系统

1.制程:

制程乃指人员、设备、材料、方法及环境

的输入,经由•定的整理程序而得到输出的结

果,一般称之成品。成品经观察、量测或测试

可衡量其绩效。SPC所管制的制程必须符合连

续性原则。

2.绩效报告:

从衡量成品得到有关制程绩效的资料,由

此提供制程的管制对策或改善成品。

3.制程中对策:

是防患于未然的一种措施,用以预防制造

出不合规格的成品。

4.成品改善:

对已经制造出来的不良品加以选别,进行

全数检查并修理或报废。

常态分配

u±K。在内之或然率t

口±0.67o50.00%

U±1068.26%

U±1.96o95.00%

u±2。95.45%

□士2.58。99.00%

□±3。99.73%

常态分配

________________99.73%-------

—-------95.45%-----------

-3cr-2aTo二+1。+2,十3c

管制界限的构成

共同原因与特殊原因之变

◎共同原因:制程中变异因素是在统计

的管制状态下,其产品之

特性有固定的分配。

◎特殊原因:制程中变异因素不在统计

的管制状态下,其产品之

特性没有固定的分配。

制程中只有共同原因的变

大小

制程中有特殊原因的变异

大小

KW%"神的.・nA“介,

第一种错误与第二种错误

(arisk;3risk)

Fl“2

第一种错误与第二种错误

(arisk;Prisk)

管制界限a值平均值移动B值

±1。31.74%±1。97.72%

±2o4.56%±2。84.13%

±3。0.27%±3。50.00%

8%

±4。103±4。15.87%

共同原因与特殊原因之对

1.特殊原因之对策(局部面)

•通常会牵涉到消除产生变异的特

殊原因

•可以由制程人员直接加以改善

・大约能够解决15%之制程上之问

2.共同原因之对策(系统面)

•通常必须改善造成变异的共同问

•经常需要管理阶层的努力与对策

•大约85%的问题是属于此类系统

SPC导入流程建立可解决

问题之系统

确认关键

制程及特性

导入sPC进行关缝制

程及特性之管制

检讨制程能力

符合规格程序不足

I足够

持续进行制程

改善计划

重新检讨管制图

管制图的选择

管制图的选择

-R-P

X-X-bX-Rm

X-R管

管制

制图

a图

计量值/计数值管制图公

式汇总

管制图CLUCLLCL

XX=XX/kX+A2RX-A2R

X-RU,o未知

RR=ZR/kD4RD^R

XX=ZX/kX+A3SX-A3S

计X-oU,o未知

SX=LS/kBtSB3s

〜二_二二

值XX=ZX/kX+mARX-niAR

X-R

RR=ZR/kD4RD3R

XX=ZR/kX十EzRmX-EzRm

X-Rm

RmRm=ZRnV(k-n+l)D4R1TID3Rm

P+37P(l-P)/nP-S^PCl-P

PP=Zd/En

P+37P(10()-P)/np-3-7p(ioo-i

pnnP=d=Ed/knP+3jnP(l-P)nP-3,nP(l-

值CC=£Ok以3夜C-3A/C

UU=ZC;ZnU+37^nU-37u/n

X-R管制图(平均值与全

距)

1.公式:

⑴又管则图

CL=X_

UCL=X+A2R

LCL二X—A2R

(2)R管制图

CL=R

UCL=D4R

LCL=DaR

2.实例:

某工厂制造一批紫铜管,应用又-R管制图来控

制其内径,尺寸单位为m/m,利用下页数据表

之数据,求得其管制界限并绘图。(n=5)

又一R管制图用数据表

制品名称:紫铜管机械号码:XXX

质量特性:内径操作者:XXX

测定单位:m/m测定者:XXX

制造场所:XXX抽样期限:自年月日

至年月日

样测定值测定值

组XRXR

XIX2X3X4X5XIX2X3X4X5

1505049525150.4314534847525150.26

2475353455049.6815534849515250.65

3464549484947.4416465053515350.67

4504849495249.6417505249494949.83

5464850545049.6818504950495149.82

6504952515451.2519524952535()51.24

747495()485249.25205()475()535250.46

8485046495148.8521524951535051.04

9505049515349.0422555451515052.25

10495151464849.2523505452504951.05

11515049465049.2524475151525250.65

12505049525150.4325535151505151.23

13494949505550.461,250120

X—R绘图步骤

1,将每样组之文与R算出记入数据表内。

2.求又与R

X=ZX=1,254=50.16

n~1T

口=空=樊=4.8

3.查系数A2,D4,D3

A2=0.58,D4=2.U,D3=负值(以0代表)

X—R绘图步骤

4,求管制界限。

(1)又管制图

CL=k=50.16

UCL=X+A2R=50.16+(0.58)(4.8)=52.93

LCL=X-A2R=50.16-(0.58)(4.8)=47.39

(2)R管制图:

CL=R=4.8

UCL=D4R=(0.11)(4.8)=10.13

LCL=D3R=(0)(4.8)=0

又-R绘图步骤

5.将管制界限绘入管制图

6.点图

7.检讨管制界限

XR管制图

UCU(52.93)

CLj(50.16)

LCU(47.39)

----UCJuo.⑸

y<^/(4.8)

-LCLjjfO)

Wb及shop

X-R范例

某产品制成后,经常发现不良品,今利用又-R管制图控

制其质量特性,每天取样2次,每次样本大小n=5,下

表是10天内所收集之数据(由同一作业员操作同一部机

器所得之数据),试计算又-R管制图之管制界限,并绘

成管制图。

组别XR组别XR

1177.62311179.89

2176.6812176.48

3178.42213178.47

4176.61214178.24

5177.0715180.66

6179.4816179.66

7178.61517177.810

8179.6618178.49

9178.8719181.67

10178.21220177.610

P管制图(不良率)

1.公式

(1)公组样本大小n相等时:

CL=P

UCL=P+3.P(l—P)/n

LCL=P-3^P(1—P)/n

(2)n不等,且相差小于20%时:

CL=P

UCL=P+3^PC1—P)/n

LCL=P-3^P(1—P)/n

P管制图(不良率)

(3)n不等,且相差大于旦%时:

CL=P

UCL=P+3*(1卡)/ni

LCL=1—3JP(lT)/ni

P管制图(不良率)

2.实例

某工厂制造外销产品,每2小时抽取100件来检查,将检查所

得之不良品数据,列于下表,利用此项数据,绘制不良率(p)管

制图,控制其质量。组别ndP组别ndP组别ndP

110030.031110030.032110050.05

210040.041210060.062210080.08

310030.031310080.082310040.04

410080.081410050.052410050.05

510050.051510020.022510040.04

610050.051610030.03合计2,500125

710070.071710060.06平均1000.05

810050.051810020.02

910050.051910070.07

1010060.062010050.05

P管制图绘图步骤

1.求管制界限

CL=P=^^=0.05=5%

UCL=P+3产曾二致

=11.54%

LCL=p_3^P(T^El)(为负值,视为0)

P管制图绘图步骤

2.点绘管制图

Wb及shop

p范例

某工厂之生产线,每分钟制造产品200个,今为控

制其焊锡不良,采用不良率管制图加以管制,每2

小时抽查200个,试根据下列资料计算不良率管制

图之中心线及管制界限,并绘制其管制图。

月日不良罐数月日不良罐数

10月6210月9日5

07

42

24

7日311日2

26

212

612□4

8日33

34

42

213日2

计量值管制图常用之系数表

n234567891011121314151617181920

A21.88()1.0230.7290.5770.48304190.373().3370.308().2850.2660.249().2350.2230.2120.2030.1940.187().180

A32.6591.9541.6281.4271.28711821.0991.0320.9750.9270.8860.850().8170.7890.7630.7390.7180.6980.680

B3————0.30301180.1850.2390.2840.3210.3540.3820.4060.4280.4480.4660.4820.4970.510

B43.2672.5682.2662.0891.97018821.8151.7611.7161.6791.6461.6181.5941.5721.5521.5341.5181.5031.490

D3..............................00760.136().1840.223().2560.283(1.307().3280.3470.3630.3780.391【).4030.415

D43.2672.5742.2822.1142.00419241.8641.8161.7771.744).7171.6931.6721.6531.6371.6221.6081.5971.585

E22.6601.7721.4571.2901.18411091.0541.0100.9750.9450.9210.8990.8800.8640.8490.9360.8240.8130.803

常态分配统计量抽样分配常数表

n234567891011121314151617181920

m3I.O(X)1.16()1.0901.1981.13512141.1601.2231.1761.2281.1881.2321.1961.2351.2031.2371.2081.2391.212

d21.1281.6932.0592.3262.53427042.8472.9703.0783.1733.2583.3363.4073.4723.5233.5883.6403.6893.735

山0.8530.8880.8800.8640.84808330.8200.8080.7970.7870.7780.7700.7630.7560.7500.7440.7390.7330.729

C20.5640.7240.7980.8410.868()8880.9030.9140.9230.9300.9360.9410.9450.9490.9520.9550.9580.9600.962

C30.4260.3780.337().305().28102610.245().2320.2200.2100.2020.194().187().1810.175().17()0.1650.1610.157

0.9840.987

C40.7980.8860.9210.9400.95209590.9650.9690.9730.9750.9780.9790.9810.9820.9850.9850.986

C50.6030.46303890.3410.30802820.2620.2460.2320.2210.2110.2020.1940.1870.1810.1750.1700.1660.161

管制图的判定方法

•正常点子之动态之管制图,如图一。

1.多数的点子,集中在中心线附近,且两边对称。

2.少数的点子,落在管制界限附近。

3.点子之分布呈随机状态,无任何规则可寻。

4.没有点子超出管制界限外(就是有也很少)。

管制图的判定方法

・不正常点子之动态之管制图

1.在中心线附近无点子。

此种型态吾人称之为“混合型"因样木中可能包括两种群

体,其中一种偏大,另一种偏小,如图二。

2.在管制界限附近无点子。

此种型态吾人称之为“层别型”,因为原群体可能已经加以检

剔过,如图三。

3.有点子逸出管制界限之现象。

此种称之为“不稳定型”如图四。

S1三

国二

A、管制图的判读法

管制图之不正常型态之鉴别是根据或然率之理论而加以判

定的,出现下述之一项者,即为不正常之型态,应调查可能原因。

检定规则1:

3点中有2点在A区或A

区以外者(口诀:3分之2A)

检定规则2:

5点中有4点在B区或B

区以外者。(口诀:5分之4B)

LCL

检定规则3:

有8点在中心线之两侧,但C区并无点子者。

(口诀:8缺C)

检定规则4:

⑴连续五点继续上升(或下降)一注意以后动态。(如图a)

⑵连续六点继续上升(或下降)一开始调查原因。(如图b)

⑶连续七点继续上升(或下降)一必有原因,应立即采取措施。(如图c)

圃b

检定规则5:点子出现在中心线的单侧较多时•,有下列状况者

a.连续11点中至少有10点

b.连续14点中至少有12点

c.连续17点中至少有14点

d.连续20点中至少有16点

检定规则6:点出现在管制图界限的近旁时

一般以超出2。管制界限的点为调整基准,出现下列情

形时,可判定制程发生异常

a.连续3点中有2点以上时

b.连续7点中有3点以上时

c.连续10点中有4点以上时

B、数据分配之连串理论判定法

管制图上诸点,以中心线(CL)为主,划分两部份,(一在上

方,一在下方),若一点或连续数点在管制图中心线之一方,该

点或连续数点为一串(nm),加总中心线上方的串数及中心线下

方的串数,便可判定此管制图是否呈随机性。

例如有一管制图如下:

UCL

CL

LCC

首先计算此管制图之总串数如下:

在管制中心线上方者:

单独1点为一串者...........4串一]

3点构成一串者.............1串片计11点

4点构成一串者............1串

6串

在管制中心线下方者:

Uh

2Hn

单独1点为一串者…h

2Un

2点构成一串者……H

1SU3点

3点构成一串者……—

1at

4点构成一串者……p

6串

在此管制图之总串数为6+6=12串

由S.Swed和C.Eisenhart所作成的表,r=lLs=13(管制图

中心线上方共11点,下方共13点,取大者为s,小者为r,令

s。),得界限值在0.005时为6(表p=0.005),在0.05时为8(表

p=0.05),因为此管制图总串数12分别大于6或8,故判定此管制

图数据之分配具随机性。

表p=0.005当机率p=0.005时,成串之最低总数表

X67891011121314151617181920

62

723

8333

93334

1033445

11344555

123445566

1334555667

154456677788

1645566778899

174556778889910

1845667788991()1011

194566788991010101111

20456778899101011111212

表p=0.05当机率p=0.05时,成串之最低总数表

X67891011121314151617181920

63

744

8445

94556

1055666

11556677

125667788

1356678899

145677889910

156678899101011

166678891010111111

17677899101011111212

18678891010111112121313

1967889101011121213131414

206788910111112121313141415

C、管制系数(Cf)判定法

一般在制程管制(IPQC)时,要判断制程是否在管制状态,可

用管制图来显示。而管制状态的程度,如用数字,则可以管制系

数Cf来表示。

Cf=VnxQx

R/cL_______

其中o又=,(Xi—X)2k:组数

_Vk-1

R=lxZRi

k

K:管制图之组数n:样本大小

Cf值判断

0.7三CfW1.3在官制状态(UnderControl)

Cf>1.3不在管制状态(Outofcontrol)

有X不同的异质群体混在一起

Cf<0.7

(建议再用层别分析)

WORKSHOP

请使用管制图的判读法及管制系数(Cf)判定法,来决定前

面又-R及P管制图中提到的范例是属于正常或异常?

SPC应用之困难

1,少量多样之生产型态,不胜管制。

2,管制计划不实际,无法落实。

3,使用SPC前未作充分准备。

例如:制程及管制特性之确定,决定量测方法,数据如何收集

等。

4.欠缺统计技术。

5.统计计算太过繁琐费时。

6.量测数据之有效数字位数未标准化。

7.管理阶层不支持。

SPC能解决之问题

1.经济性:有效的抽样管制,不用全数检验,不良率,得以控制

成本。使制程稳定,能掌握质量、成本与交期。

2.预警性:制程的异常趋势可实时对策,预防整批不良,以减少

浪费。

3.分辨特殊原因:作为局部问题对策或管理阶层系统改进之参考。

4,善用机器设备:估计机器能力,可妥善安排适当机器生产适当

零件。

5.改善的评估:制程能力可作为改善前后比较之指标。

制程能力分析

l.CaI(准确度,Accuracy)

Ca=X-Sc/(T/2)

2.CPt(精密度,Precision)

CP=T/6o(双边规格)

CP=(Su—V)/3。或(V—SL)/3。(单边规格)

3.Cpkt(制程能力,ProcessCapabilityIndex)

Cpk=(1-|Ca|)Cp;(Su-X)/3。or(X-SL)/3。(取

小的)

制程能力分析

4.不良率Pl(综合评价)

(l)Zu=3Cp(1+Ca)超出上限Pu%

ZL=3Cp(1-Ca)超出下限PL%

P%=PU%+PL%总不良率

(2)Zu=(Su-X)/o,ZL=(SL-X)/O

5.定义

(1)X:制程平均值(3)T:公差

(2)。:制程标准差(4)Sc:规格中心

例:某产品的电性规格是560±10m/m,经检验一批后求出X±3

o为561+9m/mo

求:(l)Ca

(2)Cp

⑶Cpk

(4)P%

制程能力等级判断及处置建议一Ca

制程准确度

等级Ca处置建议

Capabilityofaccuracy

作业员遵守作业标准操作,并达到规格之要

AICa|12.5%(1/8)

求须继续维持。

B12.5%<|Ca|^25%(1/4)有必要尽可能将其改进为A级。

作业员可能看错规格,不按作业标准操作或

C25%<|Ca|W50%(1/2)

检讨规格及作业标准。

应采取紧急措施,全面检讨所有可能影响之

D50%<|Ca|

因素,必要时停止生产。

制程能力等级判断及处置建议一Cp

制程精密度

等级Cp处置建议

Capabilityofprecision

此一制程甚为稳定,可以将规格许容差缩小

A1.33至Cp(T=8o)

或胜任更精密之工作。

有发生不良品之危险,必须加以注意,并设

B1.00WCpV1.33(T=6。)

法维持不要使其变坏及迅速追查原因。

检讨规格及作业标准,可能本制程不能胜任

C0.83^Cp<1.00(T=5。)

如此精密之工作。

应采取紧急措施,全面检讨所有可能影响之

DCp<0.83

因素,必要时应停止生产。

制程能力等级判断及处置建议一Cpk

Cpk制程能力指数

等级处置建议

ProcessCapabilityIndex

A1.33WCpk制程能力足够

B1.0^Cpk<1.33制程能力尚可,应再努力。

CCpk<1.0制程应加以改善。

制程能力等级判断及处置建议一p%

等级P%(综合评价)处置建议

APW0.44%稳定

B0.44%VPW1.22%同Ca及Cp

C1.22%VPW6.68%同Ca及Cp

D6.68%<P同Ca及Cp

制程能力分析之用途

1.提供数据给设计部门,使其能尽量利用目前之制程能力,以设计新产品。

2.决定一项新设备或翻修之设备能否满足要求。

3.利用机械之能力安排适当工作,使其得到最佳之应用。

4.选择适当之作业员、材料与工作方法。

5.制程能力较公差为窄时,用于建立经济管制界限。

6.制程能力较公差为宽时,可设定一适当的中心值,以获得最经济之生产。

7.用于建立机器之调整界限。

8.是一项最具价值之技术情报数据。

制程能力分析之应用

1.对设计单位提供基本数据。

2.分派工作到机器上。

3.用来验收全新或翻新调整过的设备。

4.选用合格的作业员。

5.设定生产线的机器。

6.根据规格公差设定设备的管制界限。

7.当制程能力超越公差时,决定最经济的作业水平。

8.找出最好的作业方法。

利用管制图管制制程之程序

1.绘制「制造流程图」,并用特性要因图找出每一工作道次的制造因素(条件)

及质量特性质。

2.制订操作标准。

3.实施标准的教育与训练。

4.进行制程能力解析,确定管制界限。

5.制订「质量管理方案」,包括抽样间隔、样本大小及管制界限。

6.制订管制图的分析、咒限的确定与修订等程序。

7.绘制制程管制用管制图。

利用管制图管制制程之程序

8.判定制程是否在管制状态(正常)。

9.如有异常现象则找出不正常原因并加以消除。

10.必要时修改操作标准(甚至于规格或公差)。

制程能力评价之时期

分定期与不定期两种:

1.定期评价:每周、每月、每季。

2.不定期评价:

由技术单位规定,当有下列变动时,须实施之:

(1)买入新设备时。

(2)机器设备修理完成时。

(3)工作方法变更时。

(4)其它制程条件(因素)变更时。

制程能力评价之时期

(5)某种制程发生不良时,对前道制程做系列之评价。

⑹客户订单有特别要求时。

⑺企划开发某一特殊新产品时。

掌握制程管制之主要因素

1.人员方面

(1)人人有足够之质量意识。

了解质量之重要性。

了解自己工作之质量重要性。

有责任意识,愿意将质量做好,进行自我检查等工作。(对质量负责之意

识;我做之工作,由我保证)。

(2)人人有品管之能力(指作业者)。

给予完整之检验说明。

掌握制程管制之主要因素

给予适当之仪器、设备、工具。

施予检验训练:测定值读取方法、测定器正确使用法…。

给予清楚之质量判断基准。

新进人员训练应重视。

(3)提高「检查精度」

检查治具化、物理化(感官检查)、(限度样本)。

自动检查之采用。

防呆措施(foolproof)之采用。

掌握制程管制之主要因素

多能工训练(人员请假时,不良增加之防止)。

品管人员要有充份之训练。

(4)提高人员能力或技能

教育、训练、再教育。

激发问题意识,改善意识。

不断地改善使工作更好作,而不会错,检查精度愈高。

掌握制程管制之主要因素

2.材料方面:

(1)要有优良之协力厂商。

选择质量意识高,有信用,有完整品管制度之厂商承制。

有适当之厂商奖励办法(激励、考核)。

适价政策。

整合协力厂商,使依存度提高。

掌握制程管制之主要因素

⑵交货质量之确保

要求新材料、部品认定办法。

要有清楚、明确之质量要求。

有采购契约时,要有「质量要求」条款。如构造、尺寸、试验项目、方

法、规格、不合格处理、品保证期间处理、包装方法、运送方法…。

厂商应自我质量保证,交货时应缴附「检查成绩表」。

进料时作检查或稽核。

定时、不定时进行信赖性监查。

适切之厂商辅导办法(培育)。

掌握制程管制之主要因素

(3)交货后质量之确保

良好之储运管理。

•先进先出•整理整顿•ABC分类管理。

作业者自我检查,质量再确保。

掌握制程管制之主要因素

3.机具设备方法

(1)适当的设备(机械、治工具、计测器)

精度要足够。

性能要稳定。

(2)良好之保养——使性能稳定

要有完善之设备管理规定,订定年度保养计划,有计划之保养。

•日常保养:作业者负责(日常检查、保养记录表)。

•定期保养:周保养、月保养、季保养、年保养等(定期检查报告书)。

掌握制程管制之主要因素

・保养基准、作业标准。

・备品管理。

・异常处理。

保养人员要有足够之教育训练以提升保养技能(高度自动化、无人化保全

更为重要)。

设备之精度管理一保养、制程数据应活用。

掌握制程管制之主要因素

(3)正确之操作

有完整之操作说明c

操作员之训练。

(4)设备之改善

保全人员、技术人员改善。

项目改善。

作业者改善(QCC)o

不断检讨改善,使设备更精良,不使有第一次之类似故障(再发防止)。

掌握制程管制之主要因素

4.工作方法方面

(1)具备完整之作业标湮书(指导书)

和现实作业完全相符。

每月一回,全员确认是否需要修订(适时修订)。

鼓励找出更佳方法(问题、质量、改善意识),使成为目前所知最佳合理

的方法.

掌握制程管制之主要因素

(2)作业员充份了解作业标准书之内容

要彻底地指导。

使完全了解且熟记在心里,能够自己书写、修订是最理想的。

激励、考试、询问c

⑶严格遵守作业标准书的内容

要让作业者知道遵守作业标准书之重要性。

主管要有决心,严格地指导。

干部应做检核与确认之工作。

(4)工程层别与职能分类

6。概念

L何谓六个。制程?

◎制程精密度(Cp)=2.0

◎制程能力指数(Cpk)工1.5。

2.以六个。订为品质缺点的基准理由。

◎在无制程变异情况下(Cp=Cpk二2),产生之缺点率仅为

0.002ppmo

◎在制程无法消除变异情况下,Cp=2,Cpk=l.5,缺点率为

3.4ppmo

常态分布

常悲分正

(祝格中心不偏移)

烧格下限祝格上限

/\

」।I-।।_I1।

•6。“5。-4a-3a・2。-la,X+1。+2。+3。+4。+5。+6。

±ko百分比(%)百万分缺点数

±1068.26317400

±2o95.4545500

±3。99.732700

±4o99.993763

±5。99.9999430.057

±6。99.99999980.002

常悲分配

规格中心值往左、右移勤L5。

士k。百分比(%)百万分缺点数

±1030.23697700

±2。69.13308700

±3。93.3266810

±4。99.37906210

±5o99.97670233

±6o99.9996603.4

制程能力指数Cp与制程不良率P(ppm)对照表(平均值不

偏移)。

LSLUSL

规格界限宽度规各界限宽度

±k。Cp不良率ppm_LkoCp不良率ppm

0.000.001000000.0003.331.11868.460

0.170.06867632.3353.501.17471.110

0.330.11738882.6803.661.22248.954

0.500.17617075.0773.831.28128.143

0.670.22504985.0754.001.3364.241

0.830.28404656.7624.161.3931.363

1.000.33317310.5084.331.4414.911

1.170.39243345.0094.501.506.903

1.330.44182422.4394.661.553.111

1.500.50133614.4034.831.611.365

1.670.5695580.7055.001.670.583

1.830.6166753.0155.161.720.243

2.000.6745500.2645.331.780.098

2.170.7230260.2805.501.830.039

2.330.7819630.6585.661.890.015

2.500.8312419.3315.831.940.006

2.670.897660.7616.002.000.002

2.830.944606.5326.162.050.001

3.001.002699.7966.332.110.000

标准差。与ppm制质量水平对照表

(规格中心往左、右移动1.5。)

标准差Ppm标准差ppm标准差Ppm标准差ppm

1.00697,7004.006,2004.401,8664.80484

1.10655,4004.016,0364.411,8074.81467

1.20617,9004.025,8684.421,7504.82450

1.30579,3004.035,7034.431,6954.83434

1.40539,8004.045,5434.441,6414.84419

1.50500,0004.055,3864.451,5894.85404

1.60460,2004.065,2344.461,5384.86390

1.70420,7004.075,0854.471,4894.87376

I.R03X2,1004.084,9404.4K1,4414.XX363

1.90344,6004.094,7994.491,3954.89350

2.00308,7334.104,6614.501,3504.90337

2.10274,3004.114,5274.511,3064.91325

2.20242,0004.124,3964.521,2644.92313

2.30211,9004.134,2694.531,2234.93302

2.40184,1004.144,1454.541,1834.94291

2.50158,7004.154,0244.551,1444.95280

2.60135,7004.163,9074.561,1074.96270

2.70115,1004.173,7924.571,0704.97260

2.8096,8004.183,6814.581,0354.98251

2.9080.7604.193,5724.591.0014.99242

3.0066,8034.203,4674.609685.00233

3.1054,8004.213,3644.619355.01224

3.2044,5704.223,2644.629045.02216

3.3035,9304.233,1674.638745.03208

3.4028,7204.243,0724.648485.0420()

3.5022,7504.252,9804.658165.05193

3.6017,8604.262,8904.667895.06186

3.7013,9004.272,8034.677625.07179

3.8010,7204.282,7184.687365.08172

3.859,3874.292,6354.697115.09166

3.908,1984.302,5554.706875.10159

3.917,9764.312,4774.716645.20108

3.927,7604.322,4014.726415.3072

3.937,5494.332,3274.736195.4048

3.947,3444.342,2564.745985.5()31.8

3.957,1434.35

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论