版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年人教B版高一数学下册月考试卷133考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、已知四棱锥P-ABCD的底面是边长为6的正方形;侧棱PA⊥底面ABCD,且PA=8,则该四棱锥的体积是()
A.288
B.96
C.48
D.144
2、【题文】函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是()A.f(2.5)B.f(2.5)>f(1)>f(3.5)C.f(3.5)>f(2.5)>f(1)D.f(1)>f(3.5)>f(2.5)3、【题文】已知函数在上是单调函数,则实数的取值范围是()A.B.C.D.4、【题文】下列选项中,p是q的必要不充分条件的是()A.p:>b+d,q:>b且c>dB.p:a>1,b>1q:的图像不过第二象限C.p:x=1,q:D.p:a>1,q:在上为增函数5、【题文】两平行直线分别过(1;5),(-2,1)两点,设两直线间的距离为d,则()
A.d="3"B.d="4"C.3≤d≤4D.06、已知f(x6)=log2x,那么f(8)等于()A.B.8C.18D.评卷人得分二、填空题(共9题,共18分)7、若函数的图象经过点则函数的图象必定经过的点的坐标是.8、【题文】函数是奇函数,且当时,则=____。9、已知tanx=2,则=____.10、已知函数f(x)=的定义域是R,则实数m的取值范围是____11、若三点P(1,1),A(2,﹣4),B(x,﹣9)共线,则x=____.12、已知函数在R上为奇函数,且当x≥0时,f(x)=x2-2x,则y=f(x)在R上的解析式为______.13、在下列结论中,正确结论的序号为______.
①函数y=sin(kπ-x)(k∈Z)为奇函数;
②若tan(π-x)=2,则
③函数的图象关于点对称;
④函数的图象的一条对称轴为.14、甲船在岛B的正南处,AB=5km,甲船以每小时2km的速度速度向正北方向航行,同时乙船自B出发以每小时3km的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间是______小时.15、数列{an}中,a1=3,an+1=3an-4(n∈N*),则通项公式an=______.评卷人得分三、证明题(共8题,共16分)16、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.17、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.
(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.18、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.19、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.20、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.21、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.
(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.22、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.23、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.
(1)求证:E为的中点;
(2)若CF=3,DE•EF=,求EF的长.评卷人得分四、作图题(共1题,共8分)24、画出计算1++++的程序框图.评卷人得分五、计算题(共3题,共18分)25、已知分式,当x=1时,分式的值记为f(1),当x=2时,分式的值记为f(2),依此计算:=____.26、方程2x2-x-4=0的两根为α,β,则α2+αβ+β2=____.27、已知sinθ=求的值.评卷人得分六、综合题(共3题,共21分)28、如图;⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.设AD=x,BC=y.
(1)求证:AM∥BN;
(2)求y关于x的关系式;
(3)求四边形ABCD的面积S.29、(2012•镇海区校级自主招生)如图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A,B,C三点的拋物线对应的函数关系式是____.30、已知△ABC的一边AC为关于x的一元二次方程x2+mx+4=0的两个正整数根之一,且另两边长为BC=4,AB=6,求cosA.参考答案一、选择题(共6题,共12分)1、B【分析】
∵PA⊥平面ABCD;
∴VP-ABCD=S正方形ABCD•PA
=×62×8=96
即四棱锥P-ABCD的体积为96.
故选B.
【解析】【答案】先根据PA⊥平面ABCD确定PA为四棱锥P-ABCD的高;进而根据棱锥的体积公式可求出四棱锥P-ABCD的体积.
2、B【分析】【解析】因为函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,所以直线x=2是对称轴,在(2,4)上为减函数,则f(2.5)>f(1)>f(3.5).故选B.【解析】【答案】B3、B【分析】【解析】
试题分析:由于函数在上是单调函数,因此在上恒成立,解得
考点:函数恒成立的问题.【解析】【答案】B4、A【分析】【解析】对于选项A:∵q:a>b且c>d,∴a+c>b+d,∴q⇒p,p是q的必要不充分条件,正确;对于B、∵p:a>1,b>1,∴的图象不过第二象限,但若b=0时f(x)的图象也不过第二象限,∴p是q的充分不必要条件,故B错误;对于C、∵x=1,∴但当x=0时,也成立,∴p是q的充分不必要条件,故C错误;对于D、∵a>1,∴在(0,+∞)上为增函数,p是q的充要条件,故D错误;故选A【解析】【答案】A5、D【分析】【解析】略【解析】【答案】D6、D【分析】解:∵f(x6)=log2x,∴f(8)=
故选D.
考查f(x6)=log2x的形式,把f(8)化为f(x6)的形式;即可.
本题考查函数的含义,是基础题;本题也可以先求函数f(x)的解析式,代入求值即可.【解析】【答案】D二、填空题(共9题,共18分)7、略
【分析】试题分析:因为函数与的图像关于y轴对称,所以的图像必过所以的图像必过点考点:函数图像对称问题【解析】【答案】8、略
【分析】【解析】∵时,
∴时,<0
∵=-<0
由反函数的性质得-=x=-2
∴=-2【解析】【答案】-29、3【分析】【解答】解:∵tanx=2;
∴原式===3;
故答案为:3
【分析】原式分子分母除以cosx,利用同角三角函数间基本关系化简,将tanx的值代入计算即可求出值.10、[0,8]【分析】【解答】解:∵f(x)=的定义域为R,∴mx2+mx+2≥0在R上恒成立;
①当m=0时;有2>0在R上恒成立,故符合条件;
②当m≠0时,由解得0<m≤8;
综上;实数m的取值范围是[0,8].
故答案为:[0;8].
【分析】由题意知mx2+mx+2>0在R上恒成立,因二次项的系数是参数,所以分m=0和m≠0两种情况,再利用二次函数的性质即开口方向和判别式的符号,列出式子求解,最后把这两种结果并在一起.11、3【分析】【解答】解:三点P(1,1),A(2,﹣4),B(x,﹣9)共线
⇒1×(﹣10)=﹣5(x﹣1)⇒x=3
故答案为3
【分析】三点共线等价于以三点为起点终点的两个向量共线,利用向量坐标公式求出两个向量的坐标,利用向量共线的充要条件列出方程求出x.12、略
【分析】解:由题意可得:设x<0;则-x>0;
∵当x≥0时,f(x)=x2-2x;
∴f(-x)=x2+2x;
因为函数f(x)是奇函数;
所以f(-x)=-f(x);
所以x<0时f(x)=-x2-2x;
∴f(x)=
故答案为f(x)=
由题意设x>0利用已知的解析式求出f(-x)=x2+2x;再由f(x)=-f(-x),求出x>0时的解析式.
本题的考点是利用函数的奇偶性求函数的解析式(即利用f(x)和f(-x)的关系),把x的范围转化到已知的范围内求对应的解析式.【解析】f(x)=13、略
【分析】解:对于①;函数y=sin(kπ-x)(k∈Z);
由诱导公式可化为y=-sin或y=sinx;是奇函数,命题正确;
对于②;tan(π-x)=2,∴tanx=-2
∴=-2;∴sinx=-2cosx;
∴sin2x+cos2x=(-2cosx)2+cos2x=5cos2x=1;
∴命题正确;
对于③,x=时,2x+=
∴函数的图象不关于点对称;命题错误;
对于④,x=-时,2x+=-π,cos(2x+)=-1;
∴是函数图象的一条对称轴;命题正确.
综上;正确命题序号是:①②④.
①由诱导公式化函数为y=-sin或y=sinx;判断它是奇函数;
②由tan(π-x)=2,利用诱导公式和同角的三角函数关系求出cos2x的值;
③x=时2x+=由此判断函数的图象不关于点对称;
④x=-时2x+=-π,cos(2x+)=-1,判断是函数图象的一条对称轴.
本题以命题真假为载体考查了三角函数的图象与性质的语言问题,是综合题.【解析】①②④14、略
【分析】解:假设经过x小时两船相距最近;甲乙分别行至C,D如图示。
可知BC=5-2x;BD=3x,∠CBD=120°
CD2=BC2+BD2-2BC×BD×cosCBD=(5-2x)2+9x2+2×(5-2x)×3x×
=7x2-5x+25
当x=小时时甲;乙两船相距最近;
故答案为:.
设经过x小时距离最小;然后分别表示出甲乙距离B岛的距离,再由余弦定理表示出两船的距离,最后根据二次函数求最值的方法可得到答案.
本题考查解三角形问题在生产实际中的具体运用,考查余弦定理的灵活运用,考查计算能力.解题时要认真审题,仔细解答.【解析】15、略
【分析】解:∵数列{an}中,a1=3,an+1=3an-4(n∈N*),∴an+1-2=3(an-2);
∵a1-2=1;
∴{an-2}是公比为3,首项是1的等比数列,即an-2=1×3n-1;
an=3n-1+2.
故答案为:3n-1+2.
由题意知an+1-2=3(an-2),判断{an-2}是等比数列;由此求出通项公式.
本题考查数列的性质和应用,合理地进行构造新数列是解题的关键.【解析】3n-1+2三、证明题(共8题,共16分)16、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.17、略
【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.
(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】
证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;
则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.
(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.18、略
【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;
(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F为AC中点;
∴cosC==.
答:cosC的值是.
(3)BF过圆心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.19、略
【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
从而四边形OBFC为平行四边形;
所以BM=MC.20、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.21、略
【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.
(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】
证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;
则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.
(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.22、略
【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四点共圆.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.23、略
【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE
OA=OE=>∠OAE=∠OEA
DE切圆O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
⇒OE∥AD
=>E为的中点.
(2)解:连CE;则∠AEC=90°,设圆O的半径为x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圆O于E=>△FCE∽△FEA
∴,
∴
即DE•EF=AD•CF
DE•EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC•FA=3x(3+2)=15
∴EF=四、作图题(共1题,共8分)24、解:程序框图如下:
【分析】【分析】根据题意,设计的程序框图时需要分别设置一个累加变量S和一个计数变量i,以及判断项数的判断框.五、计算题(共3题,共18分)25、略
【分析】【分析】先求出当x=1时,分式的值记为f(1)=,当x=2时,分式的值记为f()=,再进行计算.【解析】【解答】解:当x=1时,分式的值记为f(1)=;
当x=时,分式的值记为f()=;
∴=+=.
故答案为.26、略
【分析】【分析】先根据根与系数的关系求出α+β、αβ的值,再根据完全平方公式对α2+αβ+β2变形后,再把α+β、αβ的值代入计算即可.【解析】【解答】解:∵方程2x2-x-4=0的两根为α;β;
∴α+β=-=,αβ==-2;
∴α2+αβ+β2=(α+β)2-αβ=()2-(-2)=+2=.
故答案是:.27、解:∵sinθ=∴原式==﹣sinθ=﹣【分析】【分析】原式利用诱导公式化简,约分后将sinθ的值代入计算即可求出值.六、综合题(共3题,共21分)28、略
【分析】【分析】(1)由AB是直径;AM;BN是切线,得到AM⊥AB,BN⊥AB,根据垂直于同一条直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年水泥买卖合同(含合同变更和补充条款)
- 2024年度绿色建筑设计与施工合作协议书3篇
- 学困生转化工作计划
- 小学校本教研活动计划
- 电话销售业务员工作计划
- 劳动合同样板
- 公司员工自我鉴定
- 制定护士的年度工作计划
- 政府公共关系(第二版)课件 第6章 政府的公众对象与舆论环境
- 经典国学教学计划
- 2024-2030年中国硅肥行业规模分析及投资前景研究报告
- 电网行业工作汇报模板22
- 2024年度跨境电商平台承包经营合同3篇
- 2025年上半年人民日报社招聘应届高校毕业生85人笔试重点基础提升(共500题)附带答案详解
- 山东省临沂市2023-2024学年高二上学期期末考试生物试题 含答案
- 2024-2025学年一年级数学上册期末乐考非纸笔测试题(二 )(苏教版2024秋)
- 办公楼电气改造施工方案
- 浙江省衢州市2023-2024学年高一上学期期末英语试题(含答案)3
- 上学期高二期末语文试卷(含答案)
- 超龄员工用工免责协议书
- 《雁门太守行》课件
评论
0/150
提交评论