2024年浙教版高二数学下册阶段测试试卷42_第1页
2024年浙教版高二数学下册阶段测试试卷42_第2页
2024年浙教版高二数学下册阶段测试试卷42_第3页
2024年浙教版高二数学下册阶段测试试卷42_第4页
2024年浙教版高二数学下册阶段测试试卷42_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年浙教版高二数学下册阶段测试试卷42考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共7题,共14分)1、设非零复数x,y满足x2+xy+y2=0,则的值为()

A.2-2008

B.-1

C.1

D.0

2、设奇函数上是增函数,且若函数对所有的都成立,则当时t的取值范围是()A.B.C.D.3、若椭圆的短轴为一个焦点为且为等边三角形的椭圆的离心率是()A.B.C.D.4、不等式|x-1|+|x+2|的解集为()(A)(B)(C)(D)5、【题文】的值是()A.B.C.D.6、【题文】若<<0,则下列结论不正确的是A.a2<b2B.ab<b2C.>2D.|a|+|b|>|a+b|7、已知直线l与双曲线x2-y2=1交于A、B两点,若线段AB的中点为C(2,1),则直线l的斜率为()A.-2B.1C.2D.3评卷人得分二、填空题(共5题,共10分)8、已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是____.9、【题文】函数的图象如图所示,则_______,________.

10、【题文】228与1995的最大公约数是____________________.11、已知平行四边形OABC的顶点A、B分别对应复数1-3i,4+2i.O为复平面的原点,那么顶点C对应的复数是______.12、已知AB

是两个事件,P(B)=14P(AB)=18P(A|B)=

______.评卷人得分三、作图题(共7题,共14分)13、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

14、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)15、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)16、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

17、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)18、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)19、分别画一个三棱锥和一个四棱台.评卷人得分四、计算题(共2题,共10分)20、如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.21、已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.评卷人得分五、综合题(共3题,共27分)22、如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过AB,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.

(1)求抛物线的解析式;

(2)求当AD+CD最小时点D的坐标;

(3)以点A为圆心;以AD为半径作⊙A.

①证明:当AD+CD最小时;直线BD与⊙A相切;

②写出直线BD与⊙A相切时,D点的另一个坐标:____.23、(2009•新洲区校级模拟)如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴所作的垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.则AF•BE=____.24、(2015·安徽)设椭圆E的方程为+=1(ab0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足=2直线OM的斜率为参考答案一、选择题(共7题,共14分)1、B【分析】

将已知方程变形为+=-1,解这个一元二次方程,得=ω;

显然有ω3=1,1+ω=-ω2;

则原式=()2+()2=+=+==-1;

故选B.

【解析】【答案】将已知方程x2+xy+y2=0变形为+=-1,解得=ω,利用ω3=1,1+ω=-ω2;进行求解即可.

2、C【分析】【解析】试题分析:由题意得:函数上的最大值为则要使不等式成立,只需即当时,则由得:当时,成立;当时,则由得:综上故选C。考点:函数的性质【解析】【答案】C3、B【分析】【解析】试题分析:因为椭圆的短轴长为所以考点:本小题主要考查椭圆中基本量的计算和离心率的求法,考查学生的运算求解能力.【解析】【答案】B4、D【分析】当原不等式等价于解得当原不等式等价于解得当原不等式等价于无解.所以原不等式的解集为【解析】【答案】D5、D【分析】【解析】解:因为【解析】【答案】D6、D【分析】【解析】略【解析】【答案】D7、C【分析】解:设A(x1,y1),B(x2,y2);

∵A,B在双曲线上,∴

两式作差可得:即(x1-x2)(x1+x2)=(y1-y2)(y1+y2);

∵线段AB的中点为C(2,1),∴x1+x2=4,y1+y2=2;

∴.

即直线l的斜率为2.

故选:C.

设出A;B的坐标,代入双曲线方程,作差后利用中点坐标公式代入即可求得直线l的斜率.

本题考查直线与圆锥曲线的位置关系,训练了“点差法”求直线的斜率,涉及中点弦问题,常采用这种方法,是中档题.【解析】【答案】C二、填空题(共5题,共10分)8、略

【分析】

:根据四种命题的定义;

命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是“若a+b+c≠3,则a2+b2+c2<3”

故答案为:若a+b+c≠3,则a2+b2+c2<3

【解析】【答案】若原命题是“若p,则q”的形式,则其否命题是“若非p,则非q”的形式,由原命题“若a+b+c=3,则a2+b2+c2≥3”;根据否命题的定义给出答案.

9、略

【分析】【解析】

试题分析:观察图象可知,函数的周期为3,即将点代入得,所以,故答案为

考点:正弦型函数的图象和性质【解析】【答案】10、略

【分析】【解析】∴57是228和1995的最大公约数【解析】【答案】5711、略

【分析】解:∵平行四边形OABC的顶点A;B分别对应复数1-3i;4+2i.O为复平面的原点;

∴向量对应的复数分别为1-3i;4+2i;

∴向量===4+2i-1+3i=3+5i

故答案为:3+5i.

根据平行四边形OABC,向量对应的复数分别为1-3i,4+2i,得到向量==就是代入所给的数据作出向量对应的结果.

本题考查复数的代数表示法及其几何意义,本题解题的关键是根据两个向量对应的复数用向量的减法,得到结果.【解析】3+5i12、略

【分析】解:隆脽AB

是两个事件,P(B)=14P(AB)=18

隆脿P(A|B)=P(AB)P(B)=1814=12

故答案为:12

由P(B)=14P(AB)=18

利用条件概率计算公式能求出P(A|B)

的值.

本题考查概率的求法,涉及到条件概率与独立事件等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.【解析】12

三、作图题(共7题,共14分)13、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

14、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.15、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.16、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

17、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.18、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.19、解:画三棱锥可分三步完成。

第一步:画底面﹣﹣画一个三角形;

第二步:确定顶点﹣﹣在底面外任一点;

第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.

画四棱可分三步完成。

第一步:画一个四棱锥;

第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;

第三步:将多余线段擦去.

【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、计算题(共2题,共10分)20、略

【分析】【分析】作点B关于AC的对称点E,连接EP、EB、EM、EC,则PB+PM=PE+PM,因此EM的长就是PB+PM的最小值.【解析】【解答】解:如图;作点B关于AC的对称点E,连接EP;EB、EM、EC;

则PB+PM=PE+PM;

因此EM的长就是PB+PM的最小值.

从点M作MF⊥BE;垂足为F;

因为BC=2;

所以BM=1,BE=2=2.

因为∠MBF=30°;

所以MF=BM=,BF==,ME==.

所以PB+PM的最小值是.21、解:∴z1=2﹣i

设z2=a+2i(a∈R)

∴z1•z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i

∵z1•z2是实数。

∴4﹣a=0解得a=4

所以z2=4+2i【分析】【分析】利用复数的除法运算法则求出z1,设出复数z2;利用复数的乘法运算法则求出z1•z2;利用当虚部为0时复数为实数,求出z2.五、综合题(共3题,共27分)22、略

【分析】【分析】(1)由待定系数法可求得抛物线的解析式.

(2)连接BC;交直线l于点D,根据抛物线对称轴的性质,点B与点A关于直线l对称,∴AD=BD.

∴AD+CD=BD+CD;由“两点之间,线段最短”的原理可知:D在直线BC上AD+CD最短,所以D是直线l与直线BC的交点;

设出直线BC的解析式为y=kx+b;可用待定系数法求得BC直线的解析式,故可求得BC与直线l的交点D的坐标.

(3)由(2)可知,当AD+CD最短时,D在直线BC上,由于已知A,B,C,D四点坐标,根据线段之间的长度,可以求出△ABD是直角三角形,即BC与圆相切.由于AB⊥l,故由垂径定理知及切线长定理知,另一点D与现在的点D关于x轴对称,所以另一点D的坐标为(1,-2).【解析】【解答】解:

(1)设抛物线的解析式为y=a(x+1)(x-3).(1分)

将(0;3)代入上式,得3=a(0+1)(0-3).

解;得a=-1.(2分)∴抛物线的解析式为y=-(x+1)(x-3).

即y=-x2+2x+3.(3分)

(2)连接BC;交直线l于点D.

∵点B与点A关于直线l对称;

∴AD=BD.(4分)

∴AD+CD=BD+CD=BC.

由“两点之间;线段最短”的原理可知:

此时AD+CD最小;点D的位置即为所求.(5分)

设直线BC的解析式为y=kx+b;

由直线BC过点(3;0),(0,3);

解这个方程组,得

∴直线BC的解析式为y=-x+3.(6分)

由(1)知:对称轴l为;即x=1.

将x=1代入y=-x+3;得y=-1+3=2.

∴点D的坐标为(1;2).(7分)

说明:用相似三角形或三角函数求点D的坐标也可;答案正确给(2分).

(3)①连接AD.设直线l与x轴的交点记为点E.

由(2)知:当AD+CD最小时;点D的坐标为(1,2).

∴DE=AE=BE=2.

∴∠DAB=∠DBA=45度.(8分)

∴∠ADB=90度.

∴AD⊥BD.

∴BD与⊙A相切.(9分)

②∵另一点D与D(1;2)关于x轴对称;

∴D(1,-2).(11分)23、略

【分析】【分析】根据OA=OB,得到△AOB是等腰直角三角形,则△NBF也是等腰直角三角形,由于P的纵坐标是b,因而F点的纵坐标是b,即FM=b,则得到AF=b,同理BE=a,根据(a,b)是函数y=的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论