![2025届辽宁省沈阳市重点高中联合体高考全国统考预测密卷数学试卷含解析_第1页](http://file4.renrendoc.com/view11/M03/04/15/wKhkGWd25PyAKNokAAIKEcHF4uY267.jpg)
![2025届辽宁省沈阳市重点高中联合体高考全国统考预测密卷数学试卷含解析_第2页](http://file4.renrendoc.com/view11/M03/04/15/wKhkGWd25PyAKNokAAIKEcHF4uY2672.jpg)
![2025届辽宁省沈阳市重点高中联合体高考全国统考预测密卷数学试卷含解析_第3页](http://file4.renrendoc.com/view11/M03/04/15/wKhkGWd25PyAKNokAAIKEcHF4uY2673.jpg)
![2025届辽宁省沈阳市重点高中联合体高考全国统考预测密卷数学试卷含解析_第4页](http://file4.renrendoc.com/view11/M03/04/15/wKhkGWd25PyAKNokAAIKEcHF4uY2674.jpg)
![2025届辽宁省沈阳市重点高中联合体高考全国统考预测密卷数学试卷含解析_第5页](http://file4.renrendoc.com/view11/M03/04/15/wKhkGWd25PyAKNokAAIKEcHF4uY2675.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省沈阳市重点高中联合体高考全国统考预测密卷数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.△ABC的内角A,B,C的对边分别为,已知,则为()A. B. C.或 D.或2.的展开式中的系数为()A.5 B.10 C.20 D.303.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为()A. B. C. D.4.已知中,角、所对的边分别是,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分必要条件5.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)6.若为纯虚数,则z=()A. B.6i C. D.207.已知函数(其中,,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:①直线是函数图象的一条对称轴;②点是函数的一个对称中心;③函数与的图象的所有交点的横坐标之和为.其中正确的判断是()A.①② B.①③ C.②③ D.①②③8.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①② B.①③ C.②③ D.①②③9.将函数向左平移个单位,得到的图象,则满足()A.图象关于点对称,在区间上为增函数B.函数最大值为2,图象关于点对称C.图象关于直线对称,在上的最小值为1D.最小正周期为,在有两个根10.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A. B. C.2或 D.2或11.设为抛物线的焦点,,,为抛物线上三点,若,则().A.9 B.6 C. D.12.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里二、填空题:本题共4小题,每小题5分,共20分。13.若方程有两个不等实根,则实数的取值范围是_____________.14.已知为偶函数,当时,,则__________.15.在三棱锥中,,,两两垂直且,点为的外接球上任意一点,则的最大值为______.16.变量满足约束条件,则目标函数的最大值是____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.(1)证明:平面PNB;(2)问棱PA上是否存在一点E,使平面DEM,求的值18.(12分)已知点为圆:上的动点,为坐标原点,过作直线的垂线(当、重合时,直线约定为轴),垂足为,以为极点,轴的正半轴为极轴建立极坐标系.(1)求点的轨迹的极坐标方程;(2)直线的极坐标方程为,连接并延长交于,求的最大值.19.(12分)已知函数,函数().(1)讨论的单调性;(2)证明:当时,.(3)证明:当时,.20.(12分)已知,函数.(Ⅰ)若在区间上单调递增,求的值;(Ⅱ)若恒成立,求的最大值.(参考数据:)21.(12分)设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.22.(10分)这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:日期1234567全国累计报告确诊病例数量(万人)1.41.72.02.42.83.13.5(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系?(2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.参考数据:,,,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.2、C【解析】
由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.【详解】由已知,,因为展开式的通项为,所以展开式中的系数为.故选:C.【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.3、B【解析】
由圆过原点,知中有一点与原点重合,作出图形,由,,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积.【详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,由于,,∴,∴,,∴点坐标为,代入抛物线方程得,,∴,.故选:B.【点睛】本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.4、D【解析】
由大边对大角定理结合充分条件和必要条件的定义判断即可.【详解】中,角、所对的边分别是、,由大边对大角定理知“”“”,“”“”.因此,“”是“”的充分必要条件.故选:D.【点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题.5、B【解析】
根据函数的周期性以及x∈[﹣3,﹣2]的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【详解】由f(x+2)=f(x),得f(x)是周期函数且周期为2,先作出f(x)在x∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,,所以,选项A错误;选项B,因为,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),选项B正确;选项C,,所以,即,选项C错误;选项D,,选项D错误.故选:B.【点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.6、C【解析】
根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】∵为纯虚数,∴且得,此时故选:C.【点睛】本题考查复数的概念与运算,属基础题.7、C【解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否.详解:因为为对称中心,且最低点为,所以A=3,且由所以,将带入得,所以由此可得①错误,②正确,③当时,,所以与有6个交点,设各个交点坐标依次为,则,所以③正确所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题.8、D【解析】
对于①,利用抛物线的定义,利用可判断;对于②,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于③,将代入抛物线的方程可得,,从而,,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以①正确.由题意可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所以.则直线与直线的斜率乘积为.所以②正确.将代入抛物线的方程可得,,从而,.根据抛物线的对称性可知,,两点关于轴对称,所以过点,,的圆的圆心在轴上.由上,有,,则.所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以.于是,,代入,,得,所以.所以③正确.故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.9、C【解析】
由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.10、C【解析】
由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.11、C【解析】
设,,,由可得,利用定义将用表示即可.【详解】设,,,由及,得,故,所以.故选:C.【点睛】本题考查利用抛物线定义求焦半径的问题,考查学生等价转化的能力,是一道容易题.12、B【解析】
人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,计算,代入得到答案.【详解】由题意可知此人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,则,解得,从而可得,故.故选:.【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由知x>0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.14、【解析】
由偶函数的性质直接求解即可【详解】.故答案为【点睛】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力15、【解析】
先根据三棱锥的几何性质,求出外接球的半径,结合向量的运算,将问题转化为求球体表面一点到外心距离最大的问题,即可求得结果.【详解】因为两两垂直且,故三棱锥的外接球就是对应棱长为2的正方体的外接球.且外接球的球心为正方体的体对角线的中点,如下图所示:容易知外接球半径为.设线段的中点为,故可得,故当取得最大值时,取得最大值.而当在同一个大圆上,且,点与线段在球心的异侧时,取得最大值,如图所示:此时,故答案为:.【点睛】本题考查球体的几何性质,几何体的外接球问题,涉及向量的线性运算以及数量积运算,属综合性困难题.16、5【解析】
分析:画出可行域,平移直线,当直线经过时,可得有最大值.详解:画出束条件表示的可行性,如图,由可得,可得,目标函数变形为,平移直线,当直线经过时,可得有最大值,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)存在,.【解析】
(1)根据题意证出,,再由线面垂直的判定定理即可证出.(2)连接AC交DM于点Q,连接EQ,利用线面平行的性质定理可得,从而可得,在正方形ABCD中,由即可求解.【详解】(1)证明:在正方形ABCD中,M,N分别是AB,AD的中点,∴,,.∴.∴.又,∴,∴.∵为等边三角形,N是AD的中点,∴.又平面平面ABCD,平面PAD,平面平面,∴平面ABCD.又平面ABCD,∴.∵平面PNB,,∴平面PNB.(2)解:存在.如图,连接AC交DM于点Q,连接EQ.∵平面DEM,平面PAC,平面平面,∴.∴.在正方形ABCD中,,且.∴,∴.故.所以棱PA上存在点E,使平面DEM,此时,E是棱A的靠近点A的三等分点.【点睛】本题考查了线面垂直的判定定理、线面平行的性质定理,考查了学生的推理能力以及空间想象能力,属于空间几何中的基础题.18、(1);(2)【解析】
(1)设的极坐标为,在中,有,即可得结果;(2)设射线:,,圆的极坐标方程为,联立两个方程,可求出,联立可得,则计算可得,利用三角函数的性质可得最值.【详解】(1)设的极坐标为,在中,有,点的轨迹的极坐标方程为;(2)设射线:,,圆的极坐标方程为,由得:,由得:,,,当,即时,,的最大值为.【点睛】本题考查极坐标方程的应用,考查三角函数性质的应用,是中档题.19、(1)答案不唯一,具体见解析(2)证明见解析(3)证明见解析【解析】
(1)求出的定义域,导函数,对参数、分类讨论得到答案.(2)设函数,求导说明函数的单调性,求出函数的最大值,即可得证.(3)由(1)可知,可得,即又即可得证.【详解】(1)解:的定义域为,,当,时,,则在上单调递增;当,时,令,得,令,得,则在上单调递减,在上单调递增;当,时,,则在上单调递减;当,时,令,得,令,得,则在上单调递增,在上单调递减;(2)证明:设函数,则.因为,所以,,则,从而在上单调递减,所以,即.(3)证明:当时,.由(1)知,,所以,即.当时,,,则,即,又,所以,即.【点睛】本题考查利用导数研究含参函数的单调性,利用导数证明不等式,属于难题.20、(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求导,得,已知导函数单调递增,又在区间上单调递增,故,令,求得,讨论得,而,故,进而得解;(Ⅱ)可通过必要性探路,当时,由知,又由于,则,当,,结合零点存在定理可判断必存在使得,得,,化简得,再由二次函数性质即可求证;【详解】(Ⅰ)的定义域为.易知单调递增,由题意有.令,则.令得.所以当时,单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生产管理策略与工艺优化技术
- 灾害预防教育学校防灾减灾的必由之路
- 环保节能建筑的设计与实施案例分享
- 现代物流与科技融合的商业模式
- 2024年五年级英语上册 Unit 6 In a nature park Part A 第三课时说课稿 人教PEP
- 2024-2025学年新教材高中语文 第二单元 5 雷雨(节选)(1)说课稿 部编版必修下册
- 2023六年级数学下册 第2单元 百分数(二)综合与实践 生活与百分数说课稿 新人教版
- 2023八年级数学下册 第三章 图形的平移与旋转1 图形的平移第1课时 平移的概念与性质说课稿 (新版)北师大版
- Unit 1 Sports and Games Period 5 (说课稿)-2024-2025学年人教新起点版英语四年级上册001
- 2024-2025学年高中历史下学期第12-13周说课稿(2.5.1 走向整体的世界)
- 湖北省十堰市城区2024-2025学年九年级上学期期末质量检测综合物理试题(含答案)
- 高校科技成果转化政策与案例分享
- 全国职工拔河比赛执行方案
- 网优案例汇总
- 冶金厂、轧钢厂工艺流程图
- 《民航服务沟通技巧》教案第15课民航服务人员下行沟通的技巧
- 中国人婚恋状况调查报告公布
- 早产儿视网膜病变
- GB 10665-1997碳化钙(电石)
- 《中小学教育惩戒规则》重点内容学习PPT课件(带内容)
- 板带生产工艺5(热连轧带钢生产)课件
评论
0/150
提交评论