香港科技大学(广州)《Photoshop制作》2023-2024学年第一学期期末试卷_第1页
香港科技大学(广州)《Photoshop制作》2023-2024学年第一学期期末试卷_第2页
香港科技大学(广州)《Photoshop制作》2023-2024学年第一学期期末试卷_第3页
香港科技大学(广州)《Photoshop制作》2023-2024学年第一学期期末试卷_第4页
香港科技大学(广州)《Photoshop制作》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页香港科技大学(广州)《Photoshop制作》

2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的姿态估计是指确定物体在三维空间中的位置和方向。以下关于姿态估计的说法,错误的是()A.姿态估计可以通过单目相机、双目相机或深度相机来实现B.基于深度学习的方法在姿态估计任务中表现出了较高的精度C.姿态估计在机器人操作、增强现实等领域有着重要的应用价值D.姿态估计的结果总是非常精确,不受物体形状和遮挡的影响2、计算机视觉在体育赛事分析中的应用可以提供更深入的比赛洞察。假设要分析一场足球比赛中球员的跑位和传球模式,以下关于体育赛事计算机视觉应用的描述,正确的是:()A.仅依靠球员的位置信息就能全面分析比赛中的战术和策略B.球员的速度和加速度等动态信息对比赛分析的价值不大C.结合深度学习和轨迹分析技术可以更有效地挖掘比赛中的关键模式和趋势D.比赛场地的光照和摄像机视角对计算机视觉分析的结果没有影响3、计算机视觉在文物保护和修复中的应用可以帮助记录和分析文物的状态。假设要对一件古老的雕塑进行数字化保存和修复建议。以下关于计算机视觉在文物保护中的描述,哪一项是错误的?()A.可以通过三维扫描技术获取文物的精确形状和表面细节B.能够对文物的颜色和纹理进行分析,为修复提供参考C.计算机视觉可以完全替代人工的文物修复工作,保证修复的质量和效果D.可以建立文物的数字档案,方便后续的研究和展示4、在计算机视觉的图像修复任务中,假设要填补图像中缺失或损坏的部分。以下哪种方法可能更有效地恢复图像的完整性和真实性?()A.基于扩散的修复方法B.基于深度学习的图像修复模型,如ContextEncoderC.用固定的图案或颜色填充缺失部分D.不进行修复,保留图像的缺失部分5、在计算机视觉的目标跟踪任务中,需要在视频序列中持续跟踪特定的目标。假设我们要跟踪一个在人群中快速移动的人物,以下哪种目标跟踪算法能够更好地处理目标的外观变化和遮挡情况?()A.基于卡尔曼滤波的跟踪算法B.基于粒子滤波的跟踪算法C.基于深度学习的跟踪算法,如Siamese网络D.基于均值漂移的跟踪算法6、对于图像的边缘检测任务,假设要准确检测出图像中物体的边缘,同时抑制噪声的影响。以下哪种边缘检测算子可能表现更好?()A.Sobel算子B.Roberts算子C.Prewitt算子D.随机生成边缘检测结果7、对于图像的超分辨率重建任务,假设要将一张低分辨率的图像恢复为高分辨率图像,同时保留图像的细节和清晰度。这张低分辨率图像可能存在模糊和失真。以下哪种方法在处理这种情况时可能表现更好?()A.基于插值的方法,如双线性插值和双三次插值B.基于深度学习的超分辨率重建模型,如SRCNNC.对低分辨率图像进行简单的锐化处理D.不进行任何处理,直接使用低分辨率图像8、目标检测是计算机视觉中的重要任务之一。假设要在一张城市街道的图像中检测出所有的行人和车辆,以下关于目标检测算法的描述,正确的是:()A.基于传统的图像处理方法的目标检测算法在复杂场景中表现优于深度学习算法B.深度学习中的单阶段目标检测算法比两阶段算法速度快,但精度较低C.目标检测算法只需要关注目标的位置,不需要考虑目标的类别D.目标检测的准确率不受图像质量、光照条件和目标大小变化的影响9、计算机视觉中的场景理解是理解图像或视频中的场景内容和语义信息。假设要理解一张城市街道的图像,以下关于场景理解方法的描述,哪一项是不正确的?()A.可以通过对象检测、语义分割和场景分类等任务来实现场景理解B.结合上下文信息和先验知识能够提高场景理解的准确性C.深度学习模型能够学习场景中的全局特征和关系,实现对场景的深入理解D.场景理解可以在没有任何先验知识和上下文信息的情况下,准确地推断出场景的语义10、计算机视觉中的视频理解任务包括对视频内容的分析和解释。假设要理解一段新闻视频的主要内容和事件发展。以下关于视频理解的描述,哪一项是不正确的?()A.可以通过对视频中的帧进行分类、目标检测和跟踪来实现视频理解B.深度学习中的注意力机制可以帮助聚焦视频中的关键信息,提高理解的准确性C.视频理解只需要关注视觉信息,不需要考虑音频和文字等其他模态的信息D.可以结合知识图谱和语义理解技术,对视频中的内容进行更深入的分析和解释11、在计算机视觉的自动驾驶应用中,车辆需要准确识别道路标志、交通信号灯和其他车辆的状态。对于实时性和准确性要求极高的场景,以下哪种传感器融合技术能够为车辆提供更全面和可靠的环境感知?()A.摄像头与激光雷达的融合B.毫米波雷达与超声波传感器的融合C.多种摄像头的融合D.以上都是12、在目标检测中,YOLO(YouOnlyLookOnce)算法的特点是()A.检测速度快B.检测精度高C.适用于小目标检测D.对遮挡不敏感13、计算机视觉中的表情识别旨在识别图像或视频中人物的表情。假设要在一个情感分析系统中准确识别表情,以下关于表情识别方法的描述,正确的是:()A.基于几何特征的表情识别方法对表情的细微变化不敏感,识别准确率低B.基于纹理特征的表情识别方法能够很好地捕捉表情的局部特征,但容易受到光照影响C.深度学习中的卷积神经网络在表情识别中能够学习到全局和局部的特征,但对大规模数据集依赖严重D.表情识别系统只适用于正面清晰的人脸表情,对于侧脸和遮挡的表情无法识别14、在计算机视觉中,图像生成是创建新的图像内容。以下关于图像生成的说法,错误的是()A.可以通过生成对抗网络(GAN)、变分自编码器(VAE)等模型进行图像生成B.图像生成可以用于艺术创作、数据增强和虚拟场景构建等任务C.生成的图像质量和真实性在不断提高,但仍然存在一些缺陷和不完美之处D.图像生成可以完全根据用户的任意想象生成任何内容,不受任何限制15、计算机视觉在医学图像分析中有着重要作用。假设要通过眼底图像检测糖尿病性视网膜病变,以下关于模型训练中数据标注的难度,哪一项是最为显著的?()A.病变区域的边界模糊,难以精确标注B.眼底图像的质量参差不齐,影响标注准确性C.标注人员的医学知识不足,导致标注错误D.数据量过大,标注工作耗时费力16、在计算机视觉的行人检测任务中,假设要在一个拥挤的街道场景中准确检测出行人,场景中存在光照变化、人群遮挡和复杂背景。以下哪种特征表示方法在这种情况下可能更具鲁棒性?()A.基于形状的特征,如行人的轮廓B.基于颜色的特征,如行人衣服的颜色C.基于深度学习的特征,通过卷积神经网络自动学习D.不提取任何特征,直接对原始图像进行检测17、对于图像的纹理分析任务,假设要描述和区分不同类型的纹理,例如木纹和石纹。以下哪种方法可能更有助于准确分析纹理特征?()A.基于统计的方法,计算纹理的灰度共生矩阵B.基于模型的方法,如马尔可夫随机场C.仅通过肉眼观察和主观描述纹理D.不进行任何纹理分析,直接忽略纹理信息18、在计算机视觉的姿态估计任务中,假设要估计一个物体在三维空间中的姿态,例如估计一个机器人手臂的关节角度。以下哪种技术或方法可能被用于实现这一目标?()A.基于立体视觉的方法,通过多个相机的观测B.利用深度学习模型直接预测姿态参数C.仅根据物体的外观形状进行估计D.随机猜测物体的姿态19、当进行视频中的动作识别时,假设要分析一段运动员训练的视频,识别出其中的各种动作,如跑步、跳跃和举重等。视频中的动作可能存在速度变化、遮挡和视角变化等问题。为了准确识别这些动作,以下哪种技术是关键的?()A.对每一帧图像进行独立的动作分类,然后综合结果B.利用光流信息来捕捉视频中的运动模式C.只关注视频中的关键帧,忽略其他帧D.不考虑视频的时序信息,将其视为一系列独立的图像20、在计算机视觉的图像压缩任务中,需要在减少数据量的同时尽量保持图像的质量。假设要对一组高清图像进行压缩,以节省存储空间和传输带宽,同时要求解压后的图像能够满足一定的视觉要求。以下哪种图像压缩算法在这种情况下效果较好?()A.JPEG压缩算法B.PNG压缩算法C.WebP压缩算法D.BPG压缩算法21、计算机视觉中的图像配准是将不同时间、不同视角或不同传感器获取的图像进行对齐。假设要将两张拍摄角度不同的卫星图像进行配准,以下关于图像配准方法的描述,哪一项是不正确的?()A.基于特征的图像配准方法通过提取图像中的显著特征,并进行匹配来实现配准B.基于灰度的图像配准方法直接比较图像的灰度值,计算相似性度量来完成配准C.图像配准的精度主要取决于特征提取的准确性和匹配算法的性能D.图像配准总是能够完美地将两张图像对齐,不存在任何误差22、计算机视觉在自动驾驶领域有着至关重要的应用。假设一辆自动驾驶汽车正在道路上行驶,需要识别各种交通标志和障碍物。以下关于自动驾驶中计算机视觉任务的描述,正确的是:()A.只需对前方物体进行简单的图像分类,就能实现安全的自动驾驶B.准确的目标检测和语义分割对于理解复杂的道路场景至关重要C.计算机视觉在自动驾驶中作用不大,主要依靠其他传感器如雷达D.对于交通标志的识别,颜色信息比形状和图案信息更重要23、假设要开发一个能够自动识别水果种类和品质的计算机视觉系统,用于水果分拣和质量评估。在获取水果图像时,可能会受到光照、角度和遮挡等因素的影响。为了提高识别的准确性和鲁棒性,以下哪种图像预处理技术可能是关键?()A.图像增强B.图像去噪C.图像归一化D.图像分割24、计算机视觉在虚拟现实(VR)和增强现实(AR)中有着重要的应用。假设要在VR游戏中实现真实的场景交互。以下关于计算机视觉在VR/AR中的描述,哪一项是不正确的?()A.可以通过对用户的动作和姿态进行识别,实现自然的交互操作B.能够将虚拟物体与真实场景进行准确的融合和匹配C.计算机视觉技术可以提高VR/AR体验的沉浸感和真实感D.VR/AR中的计算机视觉应用不存在任何技术挑战和限制25、计算机视觉是一门研究如何让计算机从图像或视频中获取信息和理解内容的学科。在计算机视觉的应用中,目标检测是一项重要任务。以下关于目标检测的描述,不准确的是()A.目标检测能够准确识别图像或视频中特定类别的物体,并确定其位置和大小B.深度学习技术的发展极大地提高了目标检测的准确性和效率C.目标检测只适用于静态图像,对于动态视频的处理效果不佳D.目标检测在自动驾驶、安防监控和工业检测等领域有着广泛的应用26、计算机视觉中的光流估计用于计算图像中像素的运动信息。假设要对一段视频中的物体运动进行分析,以下关于光流估计的描述,正确的是:()A.稀疏光流估计只计算图像中部分特征点的运动,无法反映整体的运动趋势B.稠密光流估计能够得到图像中每个像素的运动向量,但计算复杂度较高C.光流估计的结果不受光照变化和噪声的影响,具有很高的准确性D.光流估计只能用于分析匀速直线运动的物体,对于复杂的运动模式无法处理27、计算机视觉中的医学图像分析具有重要的临床应用价值。假设要从一组X光片中检测出病变区域,同时要区分不同类型的病变。以下哪种技术和方法在医学图像分析中最为常用和有效?()A.形态学操作B.图像分割与分类C.特征提取与选择D.以上方法综合运用28、在计算机视觉的人脸识别任务中,需要应对姿态、表情和光照等变化。假设要构建一个能够在不同环境下准确识别人脸的系统,以下哪种人脸识别方法在处理这些变化时具有更高的准确性和鲁棒性?()A.基于特征点的人脸识别B.基于模板匹配的人脸识别C.基于深度学习的人脸识别D.基于几何形状的人脸识别29、计算机视觉在卫星遥感图像分析中的应用可以帮助监测地球环境和资源。假设要通过卫星图像分析森林的覆盖面积变化。以下关于计算机视觉在卫星遥感中的描述,哪一项是不准确的?()A.可以通过图像分类和分割技术区分森林、草地和建筑物等不同地物类型B.能够对多时相的卫星图像进行比较,监测森林的生长和砍伐情况C.计算机视觉在卫星遥感中的应用不受卫星图像的分辨率和光谱信息的限制D.可以结合地理信息系统(GIS)数据,进行更深入的空间分析和决策支持30、在计算机视觉的图像风格迁移任务中,将一张图像的风格应用到另一张图像上。假设要将一幅油画的风格迁移到一张照片上,以下关于图像风格迁移方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论