




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题2选择题压轴题题图象信息问题(解析版)
第一部分2022中考真题回顾
解题模型一:根据题目信息识别和判断函数图象
1.(2022•湖北)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该
水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为S1,小正方形与大正方形重
叠部分的面积为S2,若S=S1﹣S2,则S随t变化的函数图象大致为()
A.B.
C.D.
思路引领:根据题意,列出函数解析式,再选择出适合的图象.
解:由题意得:当0≤t<1时,S=4﹣t,
当1≤t≤2时,S=3,
当2<<t≤3时,S=t+1,
故选:A.
总结提升:主要考查了函数图象的读图能力.要能根据列出函数的解析式是解题的关键.
2.(2022•广西)已知反比例函数y(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函
�
数y=ax2+bx+c(a≠0)在同一平=面�直角坐标系中的图象可能是()
第1页共48页更多资料加微信:.
A.B.
C.D.
思路引领:本题形数结合,根据反比例函数y(b≠0)的图象位置,可判断b>0;再由二次函数y=
�
ax2+bx+c(a≠0)的图象性质,排除A,B,再=根�据一次函数y=cx﹣a(c≠0)的图象和性质,排除C.
解:∵反比例函数y(b≠0)的图象位于一、三象限,
�
∴b>0;=�
∵A、B的抛物线都是开口向下,
∴a<0,根据同左异右,对称轴应该在y轴的右侧,
故A、B都是错误的.
∵C、D的抛物线都是开口向上,
∴a>0,根据同左异右,对称轴应该在y轴的左侧,
∵抛物线与y轴交于负半轴,
∴c<0
由a>0,c<0,排除C.
故选:D.
总结提升:此题考查一次函数,二次函数及反比例函数中的图象和性质,因此,掌握函数的图象和性质
第2页共48页更多资料加微信:.
是解题的关键.
解题模型二:从函数图象中获取信息
3.(2022•盘锦)如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O
为正方形的中心,连接OE,OF,点P从点E出发沿E﹣O﹣F运动,同时点Q从点B出发沿BC运动,
两点运动速度均为1cm/s,当点P运动到点F时,两点同时停止运动,设运动时间为ts,连接BP,PQ,
△BPQ的面积为Scm2,下列图象能正确反映出S与t的函数关系的是()
A.B.C.D.
思路引领:分0≤t≤1和1<t≤2两种情形,确定解析式,判断即可.
解:当0≤t≤1时,
∵正方形ABCD的边长为2,点O为正方形的中心,
∴直线EO垂直BC,
∴点P到直线BC的距离为2﹣t,BQ=t,
∴S;
112
当1=<2t≤(22−时�,)⋅�=−2�+�
∵正方形ABCD的边长为2,点E,点F分别为边AD,CD中点,点O为正方形的中心,
∴直线OF∥BC,
∴点P到直线BC的距离为1,BQ=t,
∴S;
1
故选=D2.�
总结提升:本题考查了正方形的性质,二次函数的解析式,一次函数解析式,正确确定面积,从而确定
解析式是解题的关键.
4.(2022•宜昌)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其
第3页共48页更多资料加微信:.
中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为()
A.50m/minB.40m/minC.m/minD.20m/min
200
思路引领:根据小强匀速步行时的函数图象为直线7,根据图象得出结论即可.
解:由函数图象知,从30﹣70分钟时间段小强匀速步行,
∴这一时间段小强的步行速度为20(m/min),
2000−1200
=
故选:D.70−30
总结提升:本题主要考查函数图象的知识,根据函数图象得出匀速步行的时间段是解题的关键.
5.(2022•随州)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步
去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离
家的距离,则下列结论不正确的是()
A.张强从家到体育场用了15min
B.体育场离文具店1.5km
C.张强在文具店停留了20min
D.张强从文具店回家用了35min
思路引领:由函数图象分别得出选项的结论然后作出判断即可.
解:由图象知,
A、张强从家到体育场用了15min,故A选项不符合题意;
B、体育场离文具店2.5﹣1.5=1(km),故B选项符合题意;
第4页共48页更多资料加微信:.
C、张强在文具店停留了65﹣45=20(min),故C选项不符合题意;
D、张强从文具店回家用了100﹣65=35(min),故D选项不符合题意;
故选:B.
总结提升:本题主要考查函数图象的知识,熟练根据函数图象获取相应的信息是解题的关键.
6.(2022•齐齐哈尔)如图①所示(图中各角均为直角),动点P从点A出发,以每秒1个单位长度的速
度沿A→B→C→D→E路线匀速运动,△AFP的面积y随点P运动的时间x(秒)之间的函数关系图象如
图②所示,下列说法正确的是()
A.AF=5B.AB=4C.DE=3D.EF=8
思路引领:利用图②中的信息和三角形的面积公式分别求得图①中的线段,由此选择出正确选项即可.
解:由图②的第一段折线可知:点P经过4秒到达点B处,此时的三角形的面积为12,
∵动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,
∴AB=4.
∵AF•AB=12,
1
×
∴2AF=6,
∴A选项不正确,B选项正确;
由图②的第二段折线可知:点P再经过2秒到达点C处,
∴BC=2,
由图②的第三段折线可知:点P再经过6秒到达点D处,
∴CD=6,
由图②的第四段折线可知:点P再经过4秒到达点E处,
∴DE=4.
第5页共48页更多资料加微信:.
∴C选项不正确;
∵图①中各角均为直角,
∴EF=AB+CD=4+6=10,
∴D选项的结论不正确,
故选:B.
总结提升:本题主要考查了动点问题的函数图象,三角形的面积,结合图形与图象求出图形中的线段的
长度是解题的关键.
第二部分2023中考预测
7.(2022•东洲区模拟)如图,在矩形ABCD中,AB=2cm,BC=4cm,E是AD的中点,连接BE,
CE.点P从点B出发,以cm/s的速度沿BC方向运动到点C停止3,同时点Q从点B出发,以1cm/s
的速度沿BE﹣EC方向运动到3点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最
能反映y与x之间函数关系的图象是()
A.B.
C.D.
思路引领:首先根据背景图形可知,BE=EC=4,且∠EBC=30°,再根据点P,Q的运动可知,需要
分两种情况:当0<t<4时,点P在BC上,点Q在BE上;②当4<t<8时,点P与点C重合,点Q
在EC上,根据三角形的面积表达出y与x的判断可得结论.
解:在矩形ABCD中,AB=2cm,BC=4cm,
∴DC=AB=2cm,AD=BC=4cm,3
∵E是AD的中点,3
∴AE=DE=2cm,
3
第6页共48页更多资料加微信:.
由勾股定理可得,BE=CE=4cm,
∴∠AEB=30°,
∴∠EBC=∠AEB=30°.
由点P,Q的运动可知,点Q从点B到点E用时4s,从点E到点C用时4s,点P从点B到点C用时4s,
∴点Q到达点E时,点P运动到点C处,
由此可知分两段:
①当0<t<4时,如图,过点Q作QM⊥BC于点M,
∴BQ=t,BPt,
∵∠EBC=30=°,3
∴QMt,
1
=2
∴y•BP•QMt2,此段图象为抛物线,且开口向上,由此排除A,C;
1113
②当=24<t<8时=,2如⋅图3,�⋅此2�时=点4Q在EC上,过点Q作QN⊥BC于点N,
由点Q的运动可知,CQ=8﹣t,
∵∠BCE=30°,
∴QN(8﹣4),
1
=2
∴y•BC•QN4•(8﹣t)t+8,此段图象为直线的一部分,由此排除B;
111
===×3=−33
故选:D2.22
总结提升:本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关
系,然后根据二次函数和一次函数图象与性质解决问题.
8.(2022•盘锦模拟)如图,四边形ABCD是正方形,AB=2,点P为射线BC上一点,连接DP,将DP
第7页共48页更多资料加微信:.
绕点P顺时针旋转90°得到线段EP,过B作EP平行线交DC延长线于F.设BP长为x,四边形BFEP
的面积为y,下列图象能正确反映出y与x函数关系的是()
A.B.
C.D.
思路引领:方法一:根据P点在C点右侧时,BP越大,则四边形BFEP的面积越大,即可以得出只有D
选项符合要求;
方法二:分两种情况分别求出y与x的关系式,根据x的取值判断函数图象即可.
解:方法一:由题意知,当P点在C点右侧时,BP越大,则四边形BFEP的面积越大,
故D选项符合题意;
方法二:如下图,当P点在BC之间时,作EH⊥BC于H,
∵∠DPE=90°,
∴∠DPC+∠EPH=90°,
∵∠DPC+∠PDC=90°,
∴∠EPH=∠PDC,
在△EPH和△PDC中,
第8页共48页更多资料加微信:.
,
∠𝐸�=∠���
∠���=∠�𝐸
∴�△�=EP�H�≌△PDC(AAS),
∵BP=x,AB=BC=2,
∴PC=EH=2﹣x,
∴四边形BPEF的面积y=x(2﹣x)=﹣x2+2x,
同理可得当P点在C点右侧时,EH=PC=x﹣2,
∴四边形BPEF的面积y=x(x﹣2)=x2﹣2x,
综上所述,当0<x<2时,函数图象为开口方向向下的抛物线,当x>2时,函数图象为开口方向向上的
抛物线,
故选:D.
总结提升:本题主要考查二次函数图象的性质,熟练根据题意列出函数关系式是解题的关键.
9.(2022•鞍山一模)如图,在平行四边形ABCD中,BC=2,AB=4,∠A=60°,点M从A出发沿路径
A﹣B运动,点N从B出发沿路径B﹣C﹣D运动,M,N两点同时出发,且点N的运动速度是点M运动
速度的3倍,当M运动到B时,M,N两点同时停止运动,若M的运动路程为x,△BMN的面积为y,
则能反映y与x之间函数关系的图象是()
A.B.
第9页共48页更多资料加微信:.
C.D.
思路引领:分点N在BC段、CD段分别求出函数表达式,即可求解.
解:∵M,N两点同时出发,且点N的运动速度是点M运动速度的3倍,
∴点N的运动路程是点M运动路程的3倍,
根据题意可知,AM=x,∠ABC=120°,
①当点N在BC上时,即0<x<时,
2
根据题意可知,BN=3x,3
过点M作MP⊥BC交CB的延长线于点P,如图,
∴∠PBM=60°,
∴BP(2﹣x),PM(2﹣x),
13
==
∴y•2BN•PM2
1
=2
•3x•(2﹣x)
13
=
2x2x,
3333
函=−数为4开口+向2下的抛物线;故排除A,B;
②当点N在CD上运动时,如图,
由平行四边形的性质可知,AB∥CD,
∴△BMN的面积=△BMC的面积,
∴yBC•PM(2﹣x)×4x+2;此时图象为线段,故排除D,
113
故选=:2C.=2×2=−33
第10页共48页更多资料加微信:.
总结提升:本题考查的是动点图象问题,涉及到二次函数的性质、三角形面积计算等知识,此类问题关
键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
10.(2022•东昌府区二模)如图,点P,Q从边长为2的等边三角形△ABC的点B出发,分别沿着BC,
BA两边以相同的速度在△ABC的边上运动,当两点在AC边上运动到重合时停止.在此过程中,设点P,
Q移动过程中各自的路程为x,所得△BPQ的面积为y,则y随x变化的函数图象大致为()
A.B.
C.D.
思路引领:当点P和点Q分别在BC和AB上时,0≤x≤2,可得△BPQ是等边三角形,所以yx2.此
3
时,函数图象为抛物线,开口向上;可排除B,C,D,当点P,Q都在线段AC上时,2<x=≤34,此时
PQ=6﹣2x,过点B作BM⊥AC于点M,所以BM,所以y(6﹣2x)x+3.函数
1
图象为一条直线,且过第二、四象限.由此可得出结=论3.=2×3=−33
解:当点P和点Q分别在BC和AB上时,0≤x≤2,
∵∠B=60°,BQ=BP=x,
∴△BPQ是等边三角形,
∴yx2.此时,函数图象为抛物线,开口向上;故排除B,C,D,
3
当点=P4,Q都在线段AC上时,2<x≤3,
此时PQ=6﹣2x,
过点B作BM⊥AC于点M,如图,
第11页共48页更多资料加微信:.
则BM,
=3
∴y(6﹣2x)x+3.函数图象为一条直线,且过第二、四象限.
1
故选=:2A×.3=−33
总结提升:本题考查的是动点图象问题,涉及到等边三角形的性质与判定、二次函数的性质、三角形面
积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
11.(2022•本溪一模)如图,Rt△ABD≌Rt△CBD,BD=4,∠A=∠DCB=90°,∠DBA=∠DBC=60°,
动点P从A点出发,沿A→B→C,到C点停止运动,点Q从点C出发,在BC延长线上向右运动,点P、
Q同时出发,点P停止运动时,点Q也停止运动,点P、Q的运动速度都是1cm/s,则下列图象能大致
反映△PDQ的面积S(cm2)与运动时间t(s)之间函数关系的是()
A.
B.
第12页共48页更多资料加微信:.
C.
D.
思路引领:分点P在AB段、BC段分别求出函数表达式,即可求解.
解:如图,∵Rt△ABD≌Rt△CBD,BD=4,∠A=∠DCB=90°,∠DBA=∠DBC=60°,
∴AB=BC=2,AD=CD=2.
①当点P在AB上运动时,3
t秒时,AP=t=CQ,
∵AD=CD,∠A=∠DCQ=90°,
∴△ADP≌△CDQ(SAS),
∴△ADP的面积等于△DCQ的面积;
∴四边形ABCD的面积=四边形PBQD的面积.
∴BP=2﹣t,BQ=2+t,
过点P作PM⊥BC交CB的延长线于点M,如图,
∴∠PBM=60°,
∴BM(2﹣t),PM(2﹣t),
13
==
∴S=22AB•AD•BQ•P2M
11
×2−2
第13页共48页更多资料加微信:.
=22×2•(2+t)•(2﹣t)
113
××3−
t2+3,22
3
故=04<t≤23时,函数为开口向上的抛物线,且与y轴交于点(0,3);故排除A,B,C;
②当点P在BC上运动时,3
∵点P、点Q的运动速度相等,故PQ的距离保持不变,PQ=4,
SDC•PQ4=4;
11
即=点2P在BC=上2运×动2时3,×S为常3数4;
故选:D.3
总结提升:本题考查的是动点图象问题,涉及到三角形全等、二次函数、三角形面积计算等知识,此类
问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
12.(2022•宣州区二模)如图,P是矩形ABCD的一边BA延长线上一点,M是AD上一动点,连接PM
与矩形ABCD的边交于点N,连接BM,BN,若AB=6,AD=2AP=4,△BMN的面积为S,设DM=x,
则下列图象能反映S与x之间函数关系的是()
A.B.
C.D.
思路引领:利用分类讨论的方法分点N在CD上和点N在BC上两种情形解答,分别求得S与x的函数
关系式,利用对应的函数图像即可得出结论.
解:当点N与点C重合时,如图,
第14页共48页更多资料加微信:.
∵四边形ABCD是矩形,
∴AM∥BC,
∴,
𝐴��
=
∴����,
𝐴2
=
∴A4M=12.+6
∴DM=DA=AM=3.
①当0≤x≤3时,点N在CD上,
过点N作NE⊥AB于点E,如图,
则NE=AD=4,
∵DM=x,
∴AM=AD﹣DM=4﹣x,
∵S△BMN=S△NPB﹣S△MPB
PB•MEPB•MA
11
=×−×
28×428×(4﹣x)
11
=×−×
∴S2△BMN=4x2(0≤x≤3),
∴此时对应的函数图像是一条以(0,0)和(3,12)为端点的线段;
②当3<x≤4时,此时点N在线段BC上,如图,
∵四边形ABCD是矩形,
第15页共48页更多资料加微信:.
∴AM∥BC,
∴,
𝐴��1
==
∴B�N�=4A�M�=44(4﹣x).
∵S△BMN=S△NPB﹣S△MPB
PB•MEPB•MA
11
=×−×
28×4(4﹣2x)8×(4﹣x)
11
=×−×
∴S2△MBN=48﹣12x(32<x≤4),
此时对应的函数的图象为一条以(3,12)和(4,0)为端点的线段,
综上,下列图象能反映S与x之间函数关系的是B,
故选:B.
总结提升:本题主要考查了动点问题的函数的图象,利用分类讨论的方法求得不同条件下的函数解析式
是解题的关键.
13.(2022•锦州一模)如图,在Rt△ABC中,∠ACB=90°,BC,AC=2,△DEF≌△ABC,点B,
C,D,E在同一直线上(点C和点D重合),△DEF从点C=出发5沿射线CB5方向以每秒1个单位长度
的速度匀速运动,当点E运动到点C处时,停止运动.设运动时间为x秒,△ABC和△DEF重叠部分的
面积为y,下列图象能反映y与x之间函数关系的是()
A.
第16页共48页更多资料加微信:.
B.
C.
D.
思路引领:根据△DEF的运动可知,需要分三段考虑:①当点D与点B重合前;②当点D与点B重合
后,点F到线段AC前;③当点F到线段AC后,点E与点C重合前.分别画出图形,求解即可.
解:如图,在Rt△ABC中,∠ACB=90°,BC,AC=2,△DEF≌△ABC,
∴EF=BC,DF=AC=2,=55
∴EC=AB==5,55
∴tan∠ECF,sin∠ECF.
15
=2=5
过点F作FN⊥DE于点N,
则FNFD=2,DN=2FN=4,
5
∴EN==1.5
根据△DEF的运动可知,需要分三段考虑:①当点D与点B重合前,如图1;
第17页共48页更多资料加微信:.
由题意可知,CD′=x,
∴CGx,
1
=
∴y•2CD′•CGx2;显然是图象是抛物线,且开口向上,故排除C,D;
11
②当=点2D与点B重=合4后,点F到线段AC前,如图2;
过点H作HP⊥BC于点P,
设BP=m,则HP=2m,
∴D′P=4m=xm,
−5+
解得m,
�−5
=
322
∴y=S△CD′G﹣S△BHD′x••(x)xx.图象是一段抛物线,且开口向
112(�−5)1255
=−−5=−+−
下,故排除B.4231233
③当点F到线段AC后,点E与点C重合前,如图3.
y=S△DEF﹣S△CE′M﹣S△BHD′•(5﹣x)•2(5﹣x)••(x)
1112(�−5)
=×5×25−−−5
x2+10xx.是一段抛物2线,且开口向下2.23
42510
=−3+3+3
第18页共48页更多资料加微信:.
故选:A.
总结提升:本题属于动点问题相关问题,主要考查三角形的面积,三角函数值等相关内容,画出图形,
准确表达三角形的面积是解题关键.
14.(2022•淮北一模)如图,在△ABC中,∠B=90°,AC=8,O是△ABC的内切圆,分别与△ABC
三边相切于点D,E,F,设AD=x,△ABC的面积为S,则S关⊙于x的函数图象大致为()
A.B.
C.D.
思路引领:连接OD、OE,如图,设O的半径为r,利用切线的性质得OD⊥AB,OE⊥BC,AF=AD
⊙
=x,CE=CF=10﹣x,利用四边形ODBE为正方形得到DB=BE=OD=r,根据三角形面积公式得到Sr
1
(AB+CB+AC)=r2+10r,再根据勾股定理得到(x+r)2+(10﹣x+r)2=102,则r2+10r=﹣x2+10x,=所2
以S=﹣x2+10x,从而可对各选项进行判断.
第19页共48页更多资料加微信:.
解:连接OD、OE,如图,设O的半径为r,
∵△ABC的内切圆O,分别与⊙AB、BC、AC相切于点D、E、F,
∴OD⊥AB,OE⊥BC,AF=AD=x,CE=CF=8﹣x,
易得四边形ODBE为正方形,
∴DB=BE=OD=r,
∵Sr(AB+CB+AC)r(x+r+r+8﹣x+8)=r2+8r,
11
∵A=B22+BC2=AC2,=2
∴(x+r)2+(8﹣x+r)2=82,
∴r2+8r=﹣x2+8x
∴S=﹣x2+8x
=﹣(x﹣4)2+16(0<x<8).
故选:A.
总结提升:本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心
与三角形顶点的连线平分这个内角.也考查了切线的性质.
15.(2022•齐齐哈尔三模)把一个长方体铁块放在如图所示的圆柱形容器内,现按一定的速度向容器内均
匀注水,1min后将容器内注满.那么容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象
大致是()
A.B.
第20页共48页更多资料加微信:.
C.D.
思路引领:根据题意可知,在注满水的过程中,水面均是匀速上升,下面部分的底面积小于上面部分,
所以水面上升速度较快,由此可得出答案.
解:根据题意可知,按一定的速度向容器内均匀注水,
所以函数图像均为匀速上升,
由此可排除B,C选项,
刚开始时由于长方体铁块在圆柱体容器内,
注水部分的底面积为圆柱体容器的底面积减去长方体的底面积,
所以水面以较快速度均匀上升,
当水淹没长方体铁块后一直到水注满容器,
底面积是圆柱体的底面积,
所以水面以较慢速度均匀上升,
所以排除A选项,选项D符合题意,
故选:D.
总结提升:本题考查函数图象的意义,深刻理解实际问题中函数图象所代表的意义,是快速解出这道题
的关键.
16.(2022•南山区模拟)如图,已知菱形ABCD的边长为4,∠A=60°,动点E从A开始,以每秒2个
单位的速度沿路径A—B—C—D移动,动点F从点A开始,以每秒2个单位的速度沿路径A—D移动,
F点到达终点D点后停下来不动,另一个动点继续向终点D点移动,直至终点D才停下来,设点E移动
的时间为x(单位:s),△AEF的面积记为y,则y关于x的函数图象大致是()
第21页共48页更多资料加微信:.
A.B.
C.D.
思路引领:根据题意可知,需要分三种情况:当点E在线段AB上时,当点E在线段BC上时,当点E
在线段CD上时,分别求出对应的函数关系式,再判断图象即可.
解:当点E在线段AB上时,点F在AD上,此时0<x<2时,
此时y•(2x)2x2,由此可排除B,D;
3
当点E=在4线段BC上=时,3点F与点D重合,
此时y44;
1
当点E=在2线×段×C2D3上=时,3点F与点D重合,
此时y2(12﹣x)12,此时函数图象是一段一次函数图象,由此可排除C,
1
故选:=A.2×3×=−3�+3
总结提升:本题主要考查动点问题的函数图象问题,关键是根据点的运动求出对应函数解析式.
17.(2022•东莞市一模)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=BC=5,tanA.动点
4
P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥=AD3,垂足
为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()
A.B.
第22页共48页更多资料加微信:.
C.D.
思路引领:分别求出点P在AB上运动、点P在BC上运动、点P在CD上运动时的函数表达式,进而
求解.
解:①当点P在AB上运动时,
∵AB=BC=5,tanA,
4
∴AP:PH:AH=5:=43:3,
∵AP=x,
∴PHx,AHx,
43
=5=5
yAH•PH•x•xx2,图象为二次函数;
11346
===
且当2x=5时,2y=56;5故B25,C,D不正确;则A正确;
②当点P在BC上运动时,如下图,过点B作BE⊥AD于点E,
∵tanA,AB=5,
4
∴BE==4,3AE=3,
∵AB+BP=x,
∴BP=EH=x﹣5,
∴AH=2+x﹣5=x﹣2,
∴yAH•PH•(x﹣2)•4=2x﹣4,为一次函数;
11
且当=x2=10时,=y2=16;
③当点P在CD上运动时,
第23页共48页更多资料加微信:.
此时,AD=AH=3+5=8,
∵AB+BC+CP=x,
∴PH=AB+BC+CD﹣x=14﹣x,
∴yAH•PH8•(14﹣x)=﹣4x+56;
11
故选=:2A.=2×
总结提升:本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解
题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.
18.(2022•盘龙区校级模拟)如图,已知点A、B在反比例函数y(k>0,x>0)的图象上,点P沿C
�
→A→B→O的路线(图中“→”所示路线)匀速运动,过点P作=�PM⊥x轴于点M,设点P的运动时间
为t,△POM的面积为S,则S关于t的函数图象大致为()
A.B.
C.D.
思路引领:分点P在CA,A到B,BO三段上的三种情况讨论,分别判断出函数类型即可得出答案.
解:当P在CA上时,
第24页共48页更多资料加微信:.
∵三角形OMP的底OM不变,只有高PM再变化,
∴该部分对应的函数图象的类型为一次函数,
当P在A到B之间时,
∵OM•PM=k为定值,
∴三角形OMP的面积不变,
∴该部分对应的函数图象为平行于x轴的线段,
当P在OB上时,
∵OM和PM同时发生变化,
∴该部分对应的函数图象为二次函数,
故选:D.
总结提升:本题主要考查动点问题的函数图象,关键是要能根据点P的位置得出对应的函数类型.
49.(2022春•天桥区期末)已知动点H以每秒x厘米的速度沿图1的边框(边框拐角处都互相垂直)按从
A﹣B﹣C﹣D﹣E﹣F的路径匀速运动,相应的△HAF的面积S(cm2)关于时间t(s)的关系图象如图2,
已知AF=8cm,下列说法错误的是()
A.动点H的速度为2cm/s
B.b的值为14
C.BC的长度为6cm
D.在运动过程中,当△HAF的面积为30cm2时,点H的运动时间是3.75s或9.25s
思路引领:先根据点H的运动,得出当点H在不同边上时△HAF的面积变化,并对应图2得出相关边
的边长,最后经过计算判断各个选项.
解:当点H在AB上时,如图所示,
第25页共48页更多资料加微信:.
AH=xt(cm),
2
S△HAFAF×AH=4xt(cm),
1
此时三=角2形×面积随着时间增大而逐渐增大,
当点H在BC上时,如图所示,HP是△HAF的高,且HP=AB,
∴S△HAFAF×AB,此时三角形面积不变,
1
当点H在=C2D×上时,如图所示,HP是△HAF的高,C,D,P三点共线,
S△HAFAF×HP,点H从点C点D运动,HP逐渐减小,故三角形面积不断减小,
1
当点H=在2×DE上时,如图所示,HP是△HAF的高,且HP=EF,
S△HAFAF×EF,此时三角形面积不变,
1
当点H=在2×EF时,如图所示,
第26页共48页更多资料加微信:.
S△HAFAF×HF,点H从点E向点F运动,HF逐渐减小,故三角形面积不断减小直至零,
1
对照图=22可×得0≤t≤5时,点H在AB上,
2
S△HAF=4xt=4•5x=40(cm),
∴x=2,AB=2×5=10(cm),
∴动点H的速度是2cm/s,
故A正确,不符合题意,
12≤t≤b,点H在DE上,DE=AF﹣BC=8﹣6=2(cm),
∴动点H由点D运动到点E共用时2÷2=1(s),
∴b=12+1=13,
故B错误,符合题意.
5≤t≤8时,点H在BC上,此时三角形面积不变,
∴动点H由点B运动到点C共用时8﹣5=3(s),
∴BC=2×3=6(cm),
故C正确,不符合题意,
当△HAF的面积是30cm2时,点H在AB上或CD上,
2
点H在AB上时,S△HAF=4xt=8t=30(cm),
解得t=3.75(s),
点H在CD上时,
2
S△HAFAF×HP8×HP=30(cm),
11
解得H=P2=×7.5(cm)=,2×
∴CH=AB﹣HP=10﹣7.5=2.5(cm),
∴从点C运动到点H共用时2.5÷2=1.25(s),
由点A到点C共用时8s,
∴此时共用时8+1.25=9.25(s),
第27页共48页更多资料加微信:.
故D正确,不符合题意.
故选:B.
总结提升:本题是动点函数的图象问题.考查了三角形的面积公式,函数图象的性质,理解函数图象上
的点表示的意义,是解决本题的关键.
20.(2022秋•衢州期中)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P
运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是
()
A.6B.9C.12D.15
思路引领:根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变
大,从而可求出BC与AC的长度.
解:根据图象可知点P在BC上运动时,此时BP不断增大,
由图象可知:点P从B向C运动时,BP的最大值为5,
即BC=5,
由于M是曲线部分的最低点,
∴此时BP最小,
如图,即BP′⊥AC,BP′=3,
第28页共48页更多资料加微信:.
∴由勾股定理可知:PC=4,
由于图象的曲线部分是轴对称图形,
∵图象右端点函数值为5,
∴AB=BC=5,
∴P′A=P′C=4,
∴AC=8,
∴△ABC的面积为:AC•BP′8×3=12.
11
=×
故选:C.22
总结提升:本题考查了函数图象的理解和应用,等腰三角形的性质.把图形和图象结合理解得到线段长
度是解决本题的关键.
21.(2022秋•沙坪坝区校级期中)一辆汽车行驶的速度(km/h)与时间(min)之间的变化关系如图所示,
说法正确的是()
A.时间是因变量,速度是自变量
B.汽车在1~3min时匀速行驶
C.汽车在3~8min时匀速行驶
D.汽车最快的速度是10km/h
思路引领:观察图象,结合题意,明确横轴与纵轴的意义,依次分析选项可得答案.
第29页共48页更多资料加微信:.
解:速度是因变量,时间是自变量,故选项A不合题意;
汽车在1~3分钟时,速度在增加,故选项B不合题意;
汽车在3~8分钟,匀速运动,故选项C符合题意;
汽车最快速度是30千米/时,故选项D不符合题意;
故选:C.
总结提升:本题考查了函数的图象,解决本题的关键是读懂图意,明确横轴与纵轴的意义.
22.(2022•蔡甸区模拟)甲,乙两辆摇控车沿直线AC作同方向的匀速运动.甲,乙分别从A,B两处同
时出发,沿轨道到达C处,设t分钟后甲,乙两车与B处的距离分别为S1,S2,函数关系如图所示.当
两车的距离小于10米时,信号会产生相互干扰,那么t是下列哪个值时两车的信号会相互干扰()
A.B.C.D.
3111318
思路5引领:利用函数图像得5到:甲车从A处出发,5乙车从B处出发,AB5=60米,两车经过0.6分时距B
处的距离相等,甲车经过a分到达B处,两车经过b分在距离B处120米的地方相遇,此时甲车行驶了
180米,乙车行驶了120米,列出方程求出b值,从而得到两车的速度,再分别求得两车的距离小于10
米时的t的取值范围,利用此结论即可判断,从而得出结论.
解:假定甲车的速度大于乙车的速度,
由函数图像可知:甲车从A处出发,乙车从B处出发,AB=60米,两车经过0.6分时距B处的距离相等,
甲车经过a分到达B处,两车经过b分在距离B处120米的地方相遇,此时甲车行驶了180米,乙车行
驶了120米,
由题意得:600.60.6,
180120
解得:b=3.−�×=�×
经检验,b=3是原方程的根.
∴甲车的速度为60米/分,乙车的速度为40米/分.
由题意得:60+40t﹣60t=10,
解得:t=2.5,
第30页共48页更多资料加微信:.
即经过2.5分,乙车在甲车前10米,
60t﹣(60+40t)=10,
解得:t=3.5,
即经过3.5分,甲车在乙车前10米,
∴当2.5<t<3.5时,两车的距离小于10米,信号会产生相互干扰.
∵2.6,
13
=
∴5符合题意,
13
故选5:C.
总结提升:本题主要考查了函数的图象,距离,速度,时间三者的关系,利用函数的图象得出AB距离
和两车的信息是解题的关键.
23.(2022秋•西平县期中)如图1所示,Rt△ABC绕点A逆时针旋转80°,在此过程中A,B,C的对应
点依次为A,B',C',连接B'C,设旋转角为x°,y=B'C2,y与x之间的函数关系图象如图2所示,当x
=150°时,y的值为()
A.B.3C.4D.13
思路引3领:过点B′作B′H⊥AC于H,根据图2可得,BC,AC=AB+1,设AB=a,则AC=a+1,
根据勾股定理可得AB=1,AC=2,当∠B′AB=150°时,=∠B5′AH=60°,∠AB′H=30°,解直角
三角形即可得结果.
解:如图,过点B′作B′H⊥AC于H,
根据图2可得,BC,AC=AB+1,
设AB=a,则AC==a+15,
根据勾股定理可得AB2+AC2=BC2,
∴,
222
解得�:+a(=�+1或1)﹣=2((舍5)去),
∴AB=1,AC=2,
第3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大连东软信息学院《工程材料》2023-2024学年第二学期期末试卷
- 重庆市涪陵区涪陵高中2025届高三下学期阶段性测试(三)物理试题试卷含解析
- 福建省德化一中、安溪一中2025届高三下学期第一次摸底考试历史试题理试卷含解析
- 民办四川天一学院《古代汉语下》2023-2024学年第一学期期末试卷
- 白喉、百日咳、破伤风、乙肝四联制剂项目风险分析和评估报告
- 贵州体育职业学院《专项理论与实践Ⅵ》2023-2024学年第二学期期末试卷
- 铁路货运站服务项目风险分析和评估报告
- 安徽省皖南地区2024-2025学年高三考前最后一次模拟试题语文试题试卷含解析
- 新疆理工学院《TeamProject》2023-2024学年第一学期期末试卷
- 济宁医学院《文献检索与研究综述》2023-2024学年第二学期期末试卷
- 2024年公开招聘工作人员报名表
- 隐私保护与数据安全合规性测试考核试卷
- 2024年云南省昆明市盘龙区小升初英语试卷
- 大型群众性活动安全许可申请表
- 联合国可持续发展目标(SDGs)战略白皮书
- 内蒙古呼和浩特市第十六中学2024-2025学年高二语文上学期期中试题无答案
- 第一单元 歌唱祖国-《 中华人民共和国国歌》课件 2023-2024学年人音版初中音乐七年级上册
- 市政道路及设施零星养护服务技术方案(技术标)
- CQI-8分层过程审核指南(附全套表格)
- 搞好班组安全管理工作
- 生物医学体系的确立与发展
评论
0/150
提交评论