中考数学总复习《方程的实际应用模型》专项测试卷及答案_第1页
中考数学总复习《方程的实际应用模型》专项测试卷及答案_第2页
中考数学总复习《方程的实际应用模型》专项测试卷及答案_第3页
中考数学总复习《方程的实际应用模型》专项测试卷及答案_第4页
中考数学总复习《方程的实际应用模型》专项测试卷及答案_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页中考数学总复习《方程的实际应用模型》专项测试卷及答案题型解读|模型构建|通关试练本专题主要对初中阶段的方程应用题型进形总结分析,收集汇总各地市常考的方程应用题型,主要分为一元一次方程,二元一次方程组,分式方程,一元二次方程几大题型.考试中我们可以看出二元一次方程组和分式方程考试频率较高.一元一次方程相对基础较为简单,应用题型中出现较少,一元二次方程的应用综合性较高除了在应用题型中有所体现,在二次函数的应用中也经常出现.本专题根据考试题型分类归纳总结.模型01一元一次方程的应用一元一次方程的应用题型1.行程问题路程=时间×速度,时间=路程÷速度,速度=路程÷时间;(单位:路程-米、千米;时间-秒、分、时;速度-米/秒、米/分、千米/时间)2.工程问题:工作总量=工作时间×工作效率,工作总量=各部分工作量的和3.利润问题:利润=售价-进价,利润率=利润÷进价,售价=标价×折扣4.等积变形问题长方体的体积=长×宽×高;圆柱的体积=底面积×高;锻造前的体积=锻造后的体积5.利息问题利息和=本金+利息;利息=本金×利率×时间模型02二元一次方程组应用二元一次方程组应用:1.行程问题:速度×时间=路程顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度2.配套问题:实际数量比=配套比3.商品销售问题:利润=售价-进价;售价=标价×折扣;利润率=利润÷进价×100%4.工程问题:工作效率×工作时间=工作总量;甲乙合作效率=甲的效率+乙的效率模型03分式方程应用分式方程的应用解法步骤及题型:列分式方程解应用题的一般步骤,与列整式方程解应用题的步骤一样,都是按照审、设、列、解、验、答六步进行.(1)在利用分式方程解实际问题时,必须进行“双检验”,既要检验去分母化成整式方程的解是否为分式方程的解,又要检验分式方程的解是否符合实际意义.(2)分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型.模型04一元二次方程应用一元二次方程的应用主要有以下几种题型:1.数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.2.增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.3.形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.4.运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.5.利润(销售)问题利润(销售)问题中常用的等量关系:利润=售价-进价(成本)总利润=每件的利润×总件数模型01一元一次方程的应用考|向|预|测一元一次方程的应用该题型近年主要以应用题形式出现,一般为应用题型的第一问,难度系数较小,在各类考试中基本为送分题型.解这类问题的关键是根据题意设未知量、列方程、解方程,其中列方程是解题的核心,一般需要我们很好的理解题意.答|题|技|巧第一步:审:弄清题意,分清已知量和未知量,明确各数量间的关系第二步:设:设未知数,并且用含未知数的代数式表示与所列方程有关的数量列:根据题目中的数量关系、相等关系、倍数关系以及若干倍多或少个数字列方程;第三步:解:解所列的方程,求出未知数的值以及题目中所要求的相关数量的值验:检验所求的解是否符合题意,是否符合实际意义.例1.(2023·上海)1.一项工程,甲单独做需10天完成,乙单独做需6天完成,现由甲先做3天,乙再加入合做,还需几天完成这项工程?设还需天完成这项工程,由题意列方程是(

)A. B.C. D.例2.(2023·吉林长春)2.列方程解应用题劳动课上王老师带领七(1)班45名学生制作圆柱形小鼓,其中男生人数比女生人数少7人,并且每名学生每小时可制作2个鼓身或剪6个鼓面.(1)男生有______人,女生有______人.(2)①老师组织全班学生制作小鼓,要求一个鼓身配两个鼓面,为了使每小时制作的鼓身与剪出的鼓面刚好配套,应该分配多少名学生制作鼓身?多少名学生剪鼓面?②若想每小时制作78个小鼓,且制作的鼓身与剪出的鼓面刚好配套,应再加入多少名学生?请你思考此问题,直接写出结果和新加入人员具体的分配方案.模型02二元一次方程组应用考|向|预|测二元一次方程组应用该题型主要以选择、填空形式出现,难度系数不大,在各类考试中得分率较高.掌握二元一次方程组的解法是考试的重点,二元一次方程组的解法主要采用消元法,在应用题型中,根据题意列二元一次方程组相对简单,该题型设两个未知量,两个条件两个方程,相对直观,只要我们在解方程组的过程中不出现失误,一般不会失分.答|题|技|巧第一步:“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;第二步:“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数;第三步:“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;第四步:“解”就是解方程,求出未知数的值;第五步:“答”就是写出答案,注意单位要写清楚.例1.(2023·黑龙江哈尔滨)3.一种商品有大、小盒两种包装,3大盒、4小盒共装108瓶,2大盒、3小盒共装76瓶.大盒与小盒各装多少瓶?若设大盒每盒装x瓶,小盒每盒装y瓶,则可列方程组得(

)A. B. C. D.例2.(2023·安徽)4.某校准备租车运送450名学生去合肥市园博园,已知租1辆甲型客车和2辆乙型客车满载可坐学生165名,租2辆甲型客车和1辆乙型客车满载可坐学生150名,学校计划同时租甲型客车m辆,乙型客车n辆,一次性将学生运往市园博园,且恰好每辆客车都满载,两种型号客车都租用.根据以上信息,解答下列问题:(1)求1辆甲型客车和1辆乙型客车满载时分别可坐多少名学生?(2)如果乙型客车数量多于甲型客车数量,请求出甲型客车、乙型客车各多少辆?(3)已知甲型客车每辆租金200元,乙型客车每辆租金250元,如果租车总费用不超过2000元,请制定最省钱的租车方案.模型03分式方程的应用考|向|预|测分式方程的应用该题型近年在方程的应用题型中考试较多,了解解分式方程的基本思路和解法,掌握可化为一元一次方程的分式方程的解法,让学生体会解分式方程过程中的化归思想是本节内容的重心.分式方程及其应用是中考的必考内容之一,一般着重考查解分式方程及列分式方程解应用题,并要求会用增根的意义解题,考题常以解答透折考纲题的形式出现,有时也会出现在选择题和填空题中.该题型主要难点在于设、列、解,属于应用题型的第一问,难度系数不是很大,属于容易得分项.答|题|技|巧第一步:根据题意设未知量,分式方程只设一个未知量,用一个量表示另一个量;第二步:解分式方程;第三步:检验分式方程的解,看是否为增根,注意不检验会扣分;第四步:答:即写出答案,注意答案完整.例1.(2023·山西)5.我县文化宫向全县中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点米和米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的倍,乙同学比甲同学提前分钟到达活动地点.若设乙同学的速度是每分钟米,则下列方程正确的是()A. B.C. D.例2.(2023·河南)6.信阳毛尖是中国十大名茶之一,也是河南省著名特产之一.某茶叶专卖店经销A,B两种品牌的毛尖,进价和售价如下表所示:品牌AB进货(元/袋)x销售(元/袋)7090(1)第一次进货时,该专卖店用4000元购进A品牌毛尖,用5280元购进B品牌毛尖,且两种品牌所购得的数量相同,求x的值.(2)第二次进货时,A品牌毛尖每袋上涨5元,B品牌毛尖每袋上涨6元.该茶叶专卖店计划购进A,B两种品牌毛尖共180袋,且B品牌毛尖的数量不超过A品牌毛尖数量的2倍.销售时,A品牌毛尖售价不变,B品牌毛尖售价提高,则该茶叶专卖店怎样进货,能使第二次进货全部售完后获得的利润最大?最大利润是多少?模型04一元二次方程应用考|向|预|测一元二次方程应用该题型主要是在综合性大题中考试较多,一般情况下出现在应用题型中或者与二次函数相结合的题型中,具有一定的综合性和难度.掌握一元二次方程的解法是解答本题的基础和关键.一元二次方程中根的判别式的应用也需要我们重点理解和熟练应用.一元二次方程的解法及根的判别式及其应用是中考的必考内容之一,一般着重考查解一元二次方程及列方程解应用题.答|题|技|巧第一步:审(审题目,分清已知量、未知量、等量关系等);第二步:设(设未知数,有时会用未知数表示相关的量);第三步:列(根据题目中的等量关系,列出方程);第四步:解(解方程,注意分式方程需检验,将所求量表示清晰);第五步:验(检验方程的解能否保证实际问题有意义)第六步:答(写出答案,切忌答非所问).例1.(2023·安徽)7.某县为发展教育事业,加强了对教育经费的投入,2022年投入3亿元,预计2024年投入5亿元,设教育经费的年平均增长率为x,下面所列方程正确的是(

)A. B. C. D.例2.(2023·山东济南)8.某工厂为了提高产品的销售量,决定降价销售,计划用两个月的时间价格下降到原来的,则这两个月价格平均每个月降低的百分率为.例3.(2023·四川成都)9.如图1,用一段长为33米的篱笆围成一个一边靠墙并且中间有一道篱笆隔墙的矩形菜园,墙长为12米.设的长为x米,矩形菜园的面积为S平方米(1)分别用含x的代数式表示与S;(2)若,求x的值;(3)如图2,若在分成的两个小矩形的正前方各开一个1.5米宽的门(无需篱笆),当x为何值时,S取最大值,最大值为多少?(2023·山东)10.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是120元,若按进价计,其中一件盈利,另一件亏本,则两件上衣的进价之和为(

)A.230元 B.240元 C.250元 D.260元(2023·福建)11.甲、乙二人分别从相距的A,B两地出发,相向而行,如果甲比乙早出发,那么乙出发后,他们相遇;如果他们同时出发,那么后,两人相距,则甲由A地到B地需要(

)A. B. C.或 D.或(2023·四川)12.已知从甲站到乙站的高铁线路长2200千米,自驾从甲站到乙站的路线长约1700千米,开车的平均行驶速度是该高铁设计时速的,且从甲站乘坐高铁到乙站比自驾用时少6小时.设该高铁的设计时速为x千米/时,则可列方程为(

)A. B. C. D.(2023·广东)13.某兴趣小组组织一次围棋比赛,参赛选手每两人之间都要比赛一场,按计划需要进行28场比赛,设比赛组织者应邀请x人参与比赛,则可列方程为(

)A. B. C. D.(2023·山东)14.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.(2023·河北)15.某地举办了一次足球热身赛,其计分规则及奖励方案(每人)如下表:胜一场平一场负一场积分310奖金(元/人)15007000当比赛进行到每队各比赛12场时,A队共积20分,并且没有负一场.(1)试判断A队胜、平各几场?(2)若每比赛一场每名队员均得出场费500元,A队的某一名队员参加了全部比赛,那么他所得奖金与出场费的和是多少?(2023·广西)16.某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为600元,可减160元,需付款440元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算﹖设一件这种健身器材的原价为a元,求出a的取值范围.(2023·云南)17.某地要把248吨物资从某地运往甲、乙两地,用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:运往地车型甲地(元/辆)乙地(元/辆)大货车620700小货车400550(1)求大、小两种货车各用乡少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式,并请你设计出使总运费最少的货车调配方案,求出最少总运费.(2023·山东)18.在国道202公路改建工程中,某路段长,由甲、乙两个工程队拟在30天内(含30天)合作完成.已知两个工程队各有10名工人(设甲、乙两个工程队的工人全部参与改建,两工程队内每人每天的工作量相同).甲工程队1天、乙工程队2天共修路;甲工程队2天、乙工程队3天共修路.(1)试问甲、乙两个工程队每天分别修路多少米?(2)已知甲工程队每天的施工费用为万元,乙工程队每天的施工费用为万元,要使该工程的施工费用最低,甲,乙两队需各做多少天?最低费用为多少?(2023·贵州)19.运输公司要把120吨物资从A地运往B地,有甲、乙、丙三种车型供选择,每种型号的车辆的运载量和运费如表所示.车型甲乙丙运载量(吨/辆)5810运费(元/辆)450600700解答下列问题:(假设每辆车均满载)(1)若全部物资仅用甲、乙型车一次运完,需运费9600元,则甲、乙型车分别需要多少辆?(2)若用甲、乙、丙型车共14辆同时参与运送,且一次运完全部物资,其中甲型车有2辆,则乙、丙型车分别需要多少辆?此时的总运费是多少?(2023·重庆)20.某商店要购进A、B两种型号的文具,通过市场调研得知:A种型号文具的单价比B种文具的单价多100元,且用22500元购买A种型号文具的数量是用10000元购买B种文具的数量的1.5倍.(1)求A、B两种型号文具的单价分别为多少?(2)学校计划用不超过10000元的资金购买A、B两种文具共40套,为使购买的A种型号的文具尽可能多,请设计出购买方案.(2023·四川)21.某商场用5万元购进一批衬衫,很快就销售一空,于是商场打算再购进一批相同的衬衫销售,由于该衬衫畅销,导致每件衬衫的进价涨了10元,所以商场6万元购买的衬衫与上次数量一样多.(1)每件衬衫原来的进价是多少元?(2)根据第二次的进价,当销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本,为了尽可能让利给顾客,商场决定降价出售.要使每天的销售利润为3000元,那么销售单价应定为多少元?(2023·河北)22.《九章算术》中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙买东西,每人出8钱,会多3钱,每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人有x人,物价为y钱,则可列方程组为()A. B.C. D.(2024·湖南常德·一模)23.如图,有一张长,宽的矩形纸板,将纸板四个角各剪去一个边长为的正方形,然后将四周突出部分折起,可制成一个无盖长方体纸盒,要使制成纸盒的底面积是原来矩形纸板面积的,则x的值为.24.新冠肺炎传染性很强,曾有2人同时患上新冠肺炎,并且每人每天平均传染x人,若经过两天传染后就有128人患上了新冠肺炎,则x的值为.25.如图点在线段上以1的速度由点向点运动,同时,点在线段上由点向点运动.设运动时间为(),则当点的运动速度为时,与有可能全等.(2024·重庆·一模)26.某地计划修建一条长1080米的健身步道,由甲、乙两个施工队合作完成.已知乙施工队每天修建的长度比甲施工队每天修建的长度多,若乙施工队单独修建这项工程,那么他比甲施工队单独修建这项工程提前3天完成.(1)求甲、乙两施工队每天各修建多少米?(2)若甲施工队每天的修建费用为13000元,乙施工队每天的修建费用为15000元,实际修建时,先由甲施工队单独修建若干天,为了尽快完成工程,后请乙施工队加入,甲、乙施工队共同修建,乙工作队恰好工作3天完成修建任务,求共需修建费用多少元?(2024·广东惠州·一模)27.广东百千万高质量发展工程预计到2025年将实现县域经济发展加快,乡村振兴取得新成效.某乡村龙眼上市,先后两次共摘龙眼21吨,第一次卖出龙眼的价格为万元/吨;因龙眼大量上市,价格下跌,第二次卖出龙眼的价格为万元/吨,两次龙眼共卖了9万元.(1)求两次各摘龙眼多少吨?(2)由于龙眼放置时间短,村民把龙眼加工成桂圆肉和龙眼干进行销售,预计还能摘20吨,若1吨龙眼可加工成桂圆肉吨或龙眼干吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于36万元,则至少需要把多少吨龙眼加工成桂圆肉?28.小明和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以米/分的速度到达图书馆,小明始终以同一速度骑行,两人行驶的路程(米)与时间(分)的关系如图所示,请结合图象,解答下列问题:(1)___________分,___________分,___________米/分:(2)若小明的速度是120米/分,小明在途中与爸爸第二次相遇的时间是___________分,此时距图书馆的距离是___________米:(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,与小明相距100米的时间是___________分.(2024·湖南长沙·模拟预测)29.某中学为绿化美丽校园,营造温馨环境,计划购进甲、乙两种规格的花架放置新购进的绿植,调查发现,若购买甲种花架10个、乙种花架8个,共需资金1584元;若购买甲种花架5个,乙种花架12个,共需资金1656元.(1)甲、乙两种花架每个的价格分别是多少元?(2)若该校计划购进这两种规格的花架共28个,且乙种花架的数量不少于10个,设购买这批花架所需费用为w元,甲种花架购买a个,求w与a之间的函数关系式,并设计一种使费用最少的购买方案,写出最少费用.30.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格;(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.(2024·山东济南·模拟预测)31.某水果店老板市场调研发现,口感无敌的无核沃柑和面甜多汁的罗曼西红柿,物美价廉,走红市场,每斤罗曼西红柿比无核沃柑进价多元,用元购进罗曼西红柿的数量是用元购进无核沃柑数量的倍.(1)求罗曼西红柿、无核沃柑每斤进价分别为多少元?(2)罗曼西红柿每斤售价为元,无核沃柑每斤售价为元,水果店老板决定,购进无核沃柑的数量比购进罗曼西红柿的数量的倍还多斤,两种水果全部售出后,可使总的获利不低于元,则最少购进罗曼西红柿多少斤?32.某汽车销售公司4月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量之间有如下关系:若当月仅售出1辆汽车,则该部汽车的进价为万元,每多售出辆,所有售出的汽车进价每辆均降低万元,月底汽车生产厂家根据销售公司的销售量一次性返利给销售公司,销售量在辆以内含辆,每辆返利万元;若当月销售量在辆以上,每辆返利万元.(1)若该公司当月售出辆汽车,则每辆汽车的进价为万元;(2)如果该公司把该品牌汽车的售价定为万元辆,并计划当月盈利万元,那么需要销售多少辆汽车?提示:盈利=销售利润+返利)33.如图所示,中.(1)点P从点A开始沿边向B以的速度移动,点Q从B点开始沿边向点C以的速度移动,如果P,Q分别从A,B同时出发,经过几秒,点P和点Q间的距离是?(2)点P从点A开始沿边向B以的速度移动,点Q从B点开始沿边向点C以的速度移动.如果P,Q分别从A,B同时出发,线段能否将分成面积相等的两部分?若能,求出运动时间;若不能说明理由;(3)若P点沿射线方向从A点出发以的速度移动,点Q沿射线方向从C点出发以的速度移动,P,Q同时出发,问几秒后,的面积为?34.“你出地、我出苗,你种植、我培训”.在当地政府支持农业发展的政策带领下,李大伯家种植了车厘子和水蜜桃,今年开始收成并批发出售,水蜜桃的产量是300斤,车厘子的产量比水蜜桃产量的两倍多100斤,每斤车厘子批发价比水蜜桃多2元.(1)李大伯把车厘子每斤批发价至少定为多少元,可使今年这两种水果的收入不低于23400元;(2)某水果店从李大伯家用(1)中的最低批发价购进车厘子销售.第一天每斤售价为40元,卖出了100斤,为了增加销量,水果店决定第二天每斤售价降低m元,销量则在第一天的基础上上涨了2m斤,后结算发现第二天比第一天多盈利320元,已知每天的售价均为整数.求m的值.参考答案1.D【分析】本题考查了一元一次方程在工程方面的应用;由题意知甲在这项工程中做了天,根据甲完成的工程加乙完成的工程为1列出一元一次方程即可.【详解】解:由题意知,甲在这项工程中做了天则得方程:;故选:D.2.(1)19,26(2)①分配27名学生制作鼓身,18名学生剪鼓面;②新加入20人,其中12人制作鼓身,8人制作鼓面.【分析】本题考查了一元一次方程的应用,掌握配套问题的等量关系是解题的关键.(1)设男生有x人,则女生有人,根据男生人数比女生人数少7人列方程求解即可;(2)①设分配m名学生制作鼓身,则名学生剪鼓面,根据每名学生每小时可制作2个鼓身或剪6个鼓面,且每小时制作的鼓身与剪出的鼓面刚好配套列方程求解即可;②根据①可知45名学生1小时可制作小鼓54个,则若要每小时制作78个小鼓,需增加24个小鼓,则制作鼓身需要人,制作鼓面需要人,即可求解.【详解】(1)解:设男生有x人,则女生有人根据题意,得解得∴故答案为:19,26;(2)解:①设分配m名学生制作鼓身,则名学生剪鼓面由题意,得解得则答:应分配27名学生制作鼓身,18名学生剪鼓面;②由①知分配27名学生制作鼓身,18名学生剪鼓面,则1小时可制作小鼓个,还需制作个小鼓所以应再加入制作鼓身人,制作鼓面人.则新加入人,其中12人制作鼓身,8人制作鼓面.3.C【分析】本题考查由实际问题抽象出二元一次方程组,根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】解:设大盒装x瓶,小盒装y瓶,根据题意可列方程组为:故选:C.4.(1)1辆甲型客车满载时可坐45名学生,1辆乙型客车满载时可坐60名学生(2)甲型客车2辆、乙型客车6辆(3)最省钱的租车方案为甲型客车6辆,乙型客车3辆.【分析】本题考查二元一次方程和二元一次方程组的实际应用,有理数混合运算的实际应用.理解题意找出等量关系是解题关键.(1)设1辆甲型客车满载时可坐x名学生,1辆乙型客车满载时可坐y名学生,根据题意列出关于x,y的二元一次方程组求解即可;(2)根据题意可列出关于m,n的二元一次方程,结合m,n都为正整数,求解即可;(3)结合(2)可得出有两种租车方案分别为当,时和当,时,再分别计算出所需租金比较即可.【详解】(1)解:设1辆甲型客车满载时可坐x名学生,1辆乙型客车满载时可坐y名学生由题意得:解得:答:1辆甲型客车满载时可坐45名学生,1辆乙型客车满载时可坐60名学生;(2)解:由题意可知整理,得:所以.因为m,n都为正整数,且乙型客车数量多于甲型客车数量,即所以答:甲型客车2辆、乙型客车6辆;(3)解:结合(2)可知当,时;当,时.又因为所以最省钱的租车方案为甲型客车6辆,乙型客车3辆.5.D【分析】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.设乙同学的速度是米/分,甲同学的速度是米/分,从而求出甲乙所用的时间,根据乙同学比甲同学提前4分钟到达活动地点,列出方程即可.【详解】解:设乙同学的速度是米/分,甲同学的速度是米/分故乙同学用的时间为分钟,甲同学用的时间为分钟由乙同学比甲同学提前分钟可得分式方程:故选.6.(1)x的值为50(2)购进A品牌60袋,B品牌120袋能使第二次进货全部售完后获得的利润最大,最大利润是3600元【分析】本题主要考查了分式方程的实际应用,一元一次不等式的实际应用,一次函数的实际应用;(1)根据用4000元购进A品牌毛尖,用5280元购进B品牌毛尖,且两种品牌所购得的数量相同列出方程求解即可;(2)设A为m袋,则B为袋,根据B品牌毛尖的数量不超过A品牌毛尖数量的2倍列出不等式求出,设总利润为w元,根据总利润A的单件利润数量B的单件利润数量列出w关于m的一次函数关系式,利用一次函数的性质求解即可.【详解】(1)解:由题意得解得经检验是原方程的解∴x的值为50.(2)解:设A为m袋,则B为袋由题知:解得设总利润为w元∵∴w随m的增大而减小∴当时∴购进A品牌60袋,B品牌120袋能使第二次进货全部售完后获得的利润最大,最大利润是3600元.7.A【分析】本题考查了一元二次方程的应用——增长率问题,正确理解题意列得方程是解题的关键.设教育经费的年平均增长率为x,则2023年投入亿元,2024年投入亿元,由此得到方程.【详解】解:根据题意,得故选:A.8.【分析】本题考查一元二次方程的实际应用,理解题意,找到等量关系列出方程是解题的关键.这是个增长率问题,可设初始价格为,平均每个月降低的百分率为,经过了两次变化,价格变为,最终价格为初始价格的,从而可列方程求解.【详解】解:设初始价格为,平均每个月降低的百分率为则根据题意可得即解得为下降率,故,即.故答案为:.9.(1)(2)9(3)当时,S有最大值,最大值为.【分析】本题主要考查了列代数式,一元二次方程的实际应用,二次函数的实际应用,一元一次不等式的应用,正确理解题意列出对应的代数式,方程和函数关系式是解题的关键.(1)根据矩形的性质列式求出,再根据矩形面积公式求出S即可;(2)根据(2)所求得到方程,进而解方程并检验即可得到答案;(3)先求出,再求出x的取值范围,最后根据二次函数的性质求解即可.【详解】(1)解:由题意则矩形菜园的面积为;(2)解:当时,由得解得∵墙长为12米∴,则∴答:x值为9;(3)解:由题意∴∵墙长为12米,篱笆长为33米∴∴∵∴当时,S有最大值,最大值为.10.C【分析】本题考查一元一次方程的应用.根据题意可分别设进价,由售价及盈亏情况可分别求出进价,再求和即可.【详解】解:设盈利的那件进价为元,亏本的那件进价为元,则解得故两件上衣进价之和为:(元).故选:C.11.D【分析】本题考查二元一次方程组的实际应用,当同时出发后,两人相距时,需要分两种情况讨论,一种是两人相遇前相距,另一种是两人相遇后相距,根据时间、速度、路程的关系分别列二元一次方程组,解方程组求出两个人速度,路程除以速度即可求出所需时间.【详解】解:设甲、乙二人的速度分别为分两种情况:当同时出发后,两人相遇前相距时解得;当同时出发后,两人相遇后相距时解得;当甲的速度为时,由A地到B地需要时间为:当甲的速度为时,由A地到B地需要时间为:故选D.12.A【分析】本题考查了分式方程的应用,找出等量关系是解答本题的关键.根据甲站乘坐高铁到乙站比自驾用时少6小时列方程即可.【详解】解:由题意,得.故选A.13.B【分析】本题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.设参赛的人数为x,由参赛的每两人之间都要比赛一场,即可得到关于x的一元二次方程即可求解.【详解】解:设参赛的人数为x依题意,得:故选:B.14.18【分析】此题主要考查二元一次方程组的应用.设船在静水中的速度为x千米/时,水流速度为y千米/时,根据题意列出二元一次方程组即可求解.【详解】解:设船在静水中的航行速度是x千米/时,水流速度为y千米/时,根据题意得:解得:答:船在静水中的航行速度是18千米/时.故答案为:1815.(1)A队胜4场,平8场(2)出场费加奖金一共17600元【分析】本题考查了一元一次方程的应用,本题中根据总场数和总积分不变,设队胜利场,列出方程求解是解题的关键.(1)设队胜利场,则平了场,根据总积分为20分列出方程即可求解;(2)根据(1)中求得胜场数和平场数计算每名队员的奖金和出场费的总和即可解题.【详解】(1)解:设队胜利场一共打了12场平了场解得:;队胜4场,平8场;(2)解:每场比赛出场费500元,12场比赛出场费共6000元赢了4场,奖金为元平了8场,奖金为元奖金加出场费一共17600元;答:一共赢了4场,出场费加奖金一共17600元.16.(1)活动一更合算(2)这种健身器材的原价是400元;(3)当或时,活动二更合算【分析】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为元,活动二当时,所需付款为元,当时,所需付款为元,当时,所需付款为元,然后根据题意列出不等式即可求解.【详解】(1)解:购买一件原价为450元的健身器材时活动一需付款:元,活动二需付款:元∴活动一更合算;(2)解:设这种健身器材的原价是元则解得答:这种健身器材的原价是400元;(3)解:这种健身器材的原价为a元则活动一所需付款为:元活动二当时,所需付款为:元当时,所需付款为:元当时,所需付款为:元①当时,此时无论为何值,都是活动一更合算,不符合题意②当时,解得即:当时,活动二更合算③当时,解得即:当时,活动二更合算综上:当或时,活动二更合算.17.(1)大货车用8辆,小货车用12辆.(2)(且为整数).9辆小货车前往甲地;8辆大货车、3辆小货车前往乙地.最少运费为元.【分析】本题主要考查了一次函数的应用、一元一次方程的应用和最佳方案问题,综合性较强,列出函数关系式与方程是解决问题的关键,应注意最佳方案的选择.(1)设大货车用x辆,则小货车用辆,根据运输248吨物资,列方程求解.(2)设前往甲地的大货车为a辆,则前往乙地的大货车为辆,前往甲地的小货车为辆,前往乙地的小货车为辆,根据表格所给运费,求出w与a的函数关系式,结合已知条件,求a的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】(1)设大货车用x辆,则小货车用辆,根据题意得解得∴.答:大货车用8辆,小货车用12辆.(2)设前往甲地的大货车为a辆,则前往乙地的大货车为辆,前往甲地的小货车为辆,前往乙地的小货车为辆∴(且为整数).∵∴w随a的增大而增大∵∴当时,w最小,最小值为.∴使总运费最少的调配方案是:9辆小货车前往甲地;8辆大货车、3辆小货车前往乙地.最少运费为元.18.(1)甲队每天修路,乙队每天修路(2)甲队做30天,乙队做20天,最低费用为25万元【分析】此题考查了一次函数、二元一次方程组、一元一次不等式组的应用,根据题意正确列出方程组和一次函数是解题的关键.(1)设甲队每天修路xm,乙队每天修路ym,根据甲工程队1天、乙工程队2天共修路;甲工程队2天、乙工程队3天共修路列出方程组,解方程组即可得到答案;(2)设甲工程队需做a天,乙工程队需做b天,先求出.设总费用为W万元,得到.再根据一次函数的性质进行解答即可.【详解】(1)解:设甲队每天修路xm,乙队每天修路ym解得答:甲队每天修路,乙队每天修路.(2)设甲工程队需做a天,乙工程队需做b天∵∴解得.又∵∴.设总费用为W万元,依题意,得.∵∴当时(万元)∴(天).∴甲队做30天,乙队做20天,最低费用为25万元19.(1)甲、乙型车分别需要8辆、10辆(2)乙、丙型车分别需要5辆、7辆,此时的总运费为8800元【分析】本题主要考查了二元一次方程组的应用,熟练掌握建立方程组是解题关键.(1)设需要甲型车a辆,乙型车b辆,根据“120吨物资”和“运费9600元”建立方程组,解方程组即可得;(2)设需要乙型车x辆,丙型车y辆,根据“甲、乙、丙型车共14辆”,“一次运完全部物资”建立关于x,y的方程组,解方程组即可得.【详解】(1)设甲、乙型车分别需要a辆、b辆.根据题意,得解得答:甲、乙型车分别需要8辆、10辆;(2)设乙、丙型车分别需要x辆、y辆根据题意得解得此时总运费为(元).答:乙、丙型车分别需要5辆、7辆,此时的总运费为8800元.20.(1)购买A种型号文具的单价为300元,购买B种型号文具的单价为200元(2)购买A种型号玩具20套,购买B种型号玩具20套【分析】本题考查了分式方程的应用以及一元一次不等式的应用:(1)设B种型号文具的单价是x元,则A种型号文具的单价是元,利用数量=总价÷单价,结合22500元购买A种型号文具的数量是用10000元购买B种型号文具数量的1.5倍,可列出关于x的分式方程,解之经检验后,可得出B种型号文具的单价,再将其代入中,即可求出A种型号文具的单价;(2)设购买m套A种型号文具,则购买套B种型号文具,利用总价=单价×数量,结合总价不超过10000元,可列出关于m的一元一次不等式,解之可得出m的取值范围,再取其中的最大值,即可得出购买方案.【详解】(1)解:设购买B种型号文具的单价为x元,则购买A种型号文具的单价为元解得,经检验是原分式方程的解,且符合题意∴(元)答:购买A种型号文具的单价为300元,购买B种型号文具的单价为200元;(2)解:设购买A种型号玩具m套,则购买B种型号玩具套,根据题意得:解得∴m的最大值为20,此时(套)答:购买A种型号玩具20套,购买B种型号玩具20套21.(1)50;(2)80.【分析】本题考查了分式方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元二次方程.(1)设原来衬衫每件进价为x元,则后一批衬衫每件进价为元,利用数量总价单价,结合两批衬衫购进的数量相等,即可得出关于x的分式方程,解之经检验后即可求出;(2)设定价为a元,根据后一批衬衫每天的销售利润为3000元,即可得出关于a的一元二次方程的解法,一元二次方程,解之取符合题意的值即可得出结论.【详解】(1)解:设原来衬衫每件进价为x元,则后一批衬衫每件进价为元依题意得:解得:经检验,是原方程的解,且符合题意.答:原来衬衫每件进价为50元.(2)解:设定价为a元,根据题意得.整理得解得为了尽可能让利给顾客答:定价为80元的时候可以每天的利润达到3000元同时让利于顾客.22.A【分析】本题考查了从实际问题中抽象出二元一次方程组,正确得出等量关系是解题关键.设合伙人有x人,物价为y钱,根据“每人出8钱,会多3钱,每人出7钱,又会差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:依题意得:.故选:A.23.5【分析】本题考查了一元二次方程的应用,根据题意,根据面积公式得出,再运用因式分解法解出(不合题意,舍去),即可作答.【详解】解:由题意可知,无盖纸盒的长为,宽为∴整理得解得(不合题意,舍去)故x的值为5.故答案为:524.7【分析】根据“2人同时患上新冠肺炎,经过两天传染后128人患上新冠肺炎”,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:依题意得:解得:(不合题意,舍去).故答案为:7.【点睛】本题主要考查一元二次方程的实际应用,根据等量关系列出方程是关键.25.1或1.5【分析】本题主要考查全等三角形的性质、一元一次方程的应用等知识,理解并掌握全等三角形的性质是解题关键.设点的运动速度是,则有若与全等,有两种情况:①;②.分别求解即可.【详解】解:设点的运动速度是则有∵∴与全等,有两种情况:①则解得则解得;②解得.故答案为:1或1.5.26.(1)甲施工队每天修建90米,乙施工队每天修建120米(2)共需修建费用149000元【分析】本题考查了分式方程的实际应用以及一元一次方程的应用,正确掌握相关性质内容是解题的关键.(1)设甲施工队每天修建的长度为米,则乙施工队每天修建米,列式代入数值进行计算,注意验根;(2)设甲施工队单独修建天,列式,得出,结合“甲施工队每天的修建费用为13000元,乙施工队每天的修建费用为15000元”进行列式计算,即可作答.【详解】(1)解:设甲施工队每天修建的长度为米,则乙施工队每天修建米依题意,得解得经检验,是原分式方程的解∴(米)∴甲施工队每天修建90米,乙施工队每天修建120米;(2)解:设甲施工队单独修建天依题意,得解得∴甲施工队单独修建5天则(元)∴共需修建费用149000元.27.(1)第一次卖出龙眼6吨,则第二次卖出龙眼15吨(2)至少需要把12吨龙眼加工成桂圆肉【分析】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用:(1)设第一次卖出龙眼x吨,则第二次卖出龙眼吨,根据两次一共卖了9万元列出方程求解即可;(2)设把y吨龙眼加工成桂圆肉,则把吨龙眼加工成龙眼干,根据销售额不少于36万元列出不等式求解即可.【详解】(1)解:设第一次卖出龙眼x吨,则第二次卖出龙眼吨由题意得:解得:∴(吨)答:第一次卖出龙眼6吨,则第二次卖出龙眼15吨;(2)解:设把y吨龙眼加工成桂圆肉,则把吨龙眼加工成龙眼干由题意得:解得:答:至少需要把12吨龙眼加工成桂圆肉.28.(1)10,15,200;(2)18.75,750;(3)或【分析】本题考查了一次函数的应用,函数图象获取信息,一元一次方程的应用,利用分类讨论和数形结合的思想解决问题是关键.(1)根据速度路程时间,求出的值,进而求出的值,再根据速度路程时间,求出的值即可;(2)由图象可知,小明在途中与爸爸第二次相遇在段,分别求出段和段的关系时,求出路程相等时的值,进而求出行驶的路程,即可求解;(3)分两种情况讨论:①当爸爸和小明第二次相遇前相距米;②当爸爸和小明第二次相遇后相距米,分别列方程求解即可.【详解】(1)解:由题意可知,折线为爸爸行驶的路程与时间的关系图,线段为小明行驶的路程与时间的关系图分钟分钟米/分故答案为:10,15,200;(2)解:由图象可知,小明在途中与爸爸第二次相遇在段设段的关系式为将点和代入,得:,解得:段的解析式为小明的速度是120米/分段的关系式为,即解得:,即小明在途中与爸爸第二次相遇的时间是分此时行驶的路程距图书馆的距离是米故答案为:18.75,750;(3)解:①当爸爸和小明第二次相遇前相距米则解得:;②当爸爸和小明第二次相遇后相距米则解得:即爸爸自第二次出发至到达图书馆前,与小明相距100米的时间是或分故答案为:或29.(1)甲种花架每个的价格为72元,乙种花架每个的价格为108元(2),当购买甲种花架18个,乙种花架10个时,所需费用最少,最少费用为2376元【分析】本题考查二元一次方程组和一次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.(1)设甲种花架每个的价格为元,乙种花架每个的价格为元,根据题意得,即可解得答案;(2)由乙种花架的数量不少于10个,可得,而,根据一次函数性质可得答案.【详解】(1)解:设甲种花架每个的价格为元,乙种花架每个的价格为元,根据题意得:解得:答:甲种花架每个的价格为72元,乙种花架每个的价格为108元;(2)∵甲种花架购买个∴乙种花架购买个∵乙种花架的数量不少于10个∴解得:根据题意得:∵∴随的增大而减小∴当时,取最小值,最小值为∴当购买甲种花架18个,乙种花架10个时,所需费用最少,最少费用为2376元.30.(1)菜苗基地每捆A种菜苗的价格为20元(2)本次购买最少花费2250元【分析】本题主要考查了分式方程的实际应用,一次函数的实际应用,一元一次不等式的实际应用:(1)设菜苗基地每捆A种菜苗的价格为x元,则市场上每捆A种菜苗的价格为元,根据用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆列出方程求解即可;(2)设购买A种菜苗m捆,总花费为W元,则购买B种菜苗捆,先根据题意列出W关于m的一次函数关系式,再由A种菜苗的捆数不超过B种菜苗的捆数列出不等式求出m的取值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论