版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重难点专项突破01二次函数的最值(4种题型)【题型细目表】题型一:利用二次函数的对称性求最短路径题型二:面积最值问题题型三:最大利润问题题型四:线段最值问题【考点剖析】题型一:利用二次函数的对称性求最短路径一、填空题1.(浙江宁波·九年级宁波东海实验学校校考期中)如图,抛物线过点A(1,0),B(3,0),与y轴相交于点C.若点P为线段OC上的动点,连结BP,过点C作CN垂直于直线BP,垂足为N,当点P从点O运动到点C时,点N运动路径的长为_____2.(浙江杭州·九年级翠苑中学校联考期中)若抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,抛物线顶点为点B.①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得的抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为.其中正确的是___.(填序号)二、解答题3.(浙江宁波·九年级统考期末)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线,且抛物线经过B(1,0),C(0,3)两点,与x轴交于点A.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线上找一点M,使点M到点B的距离与到点C的距离之和最小,求出点M的坐标;(3)如图2,点Q为直线AC上方抛物线上一点,若∠CBQ=45°,请求出点Q坐标.4.(浙江杭州·九年级期末)如图,抛物线与x轴交于A,B两点,与y轴交于C点,且.(1)求抛物线的解析式及顶点D的坐标;(2)点M是对称轴上的一个动点,当的周长最小时,求点M的坐标.5.(浙江绍兴·九年级校联考期中)如图,二次函数图象与x轴交于点A、B,与y轴交与点C,抛物线的顶点坐标是(2,9),且经过D(3,8).(1)求抛物线的函数关系式;(2)求△ABC的面积;(3)在抛物线的对称轴上是否存在一点M,使得BM+DM最短?若存在,求出M的坐标.若不存在,请说明理由.6.(2022秋·浙江丽水·九年级校联考期中)如图,已知抛物线与x轴交于A,B两点,与y轴交于点C,点B的坐标为(5,0).(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.7.(浙江宁波·校联考一模)如图,抛物线M1:y=x2-4与x轴的负半轴相交于点A,将抛物线M1平移得到抛物线M2:y=ax2+bx+c,M1与M2相交于点B,直线AB交M2于点C(8,m),且AB=BC.(1)求点A,B,C的坐标;(2)写出一种将抛物线M1平移到抛物线M2的方法;(3)在y轴上找点P,使得BP+CP的值最小,求点P的坐标.8.(2022秋·浙江金华·九年级校考阶段练习)已知抛物线的图象如图所示,它与x轴的一个交点的坐标为,与y轴的交点坐标为.(1)求抛物线的解析式及与x轴的另一个交点B的坐标;(2)根据图象回答:当x取何值时,?(3)在抛物线的对称轴上有一动点P,求的值最小时的点P的坐标.题型二:面积最值问题一、解答题1.(2022·浙江·九年级自主招生)中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a,b,c,三角形的面积S可由公式求得,其中p为三角形周长的一半,这个公式也被称为海伦——秦九韶公式,现有一个三角形的边长满足,求这个三角形面积的最大值,并判断此时三角形的形状.2.(2022秋·浙江宁波·九年级校考期中)如图,在足够大的空地上有一段长为a米的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.若设的长度为x米,矩形菜园面积为S平方米.(1)写出S与x的关系式(不要求写出自变量的取值范围);(2)若,所围成的矩形菜园的面积为450平方米,求所利用旧墙的长;(3)求矩形菜园面积的最大值.3.(2023秋·浙江台州·九年级统考期末)某校科技兴趣小组制作了一个机器人,该机器人能根据指令要求进行旋转和行走.机器人从起点出发,连续执行如下指令:机器人先向前直行(表示第次行走的路程),再逆时针旋转,直到第一次回到起点后停止.记机器人共行走的路程为,所走路径形成的封闭图形的面积为.例如:如图1,当每次直行路程均为1(即),时,机器人的运动路径为,机器人共走的路程,由图1图2易得所走路径形成的封闭图形的面积为.(1)若,请完成下表.(2)如图3,若,机器人执行六次指令后回到起点处停止.①若,,,,则______,______.②若,,,请直接写出与之间的数量关系,并求出当最大时的值.4.(2022秋·浙江杭州·九年级校考期中)如图,有一个铝合金窗框,所使用的铝合金材料长度为.设长为,窗户的总面积为.(1)求关于的函数表达式;(2)若的长不能低于,且,求此时窗户总面积的最大值和最小值.5.(2023·浙江宁波·统考一模)有一块形状如图1的四边形余料,,,,,,要在这块余料上截取一块矩形材料,其中一条边在上.(1)如图2,若所截矩形材料的另一条边在上,设,矩形的面积为y,①求y关于x的函数表达式.②求矩形面积y的最大值.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.6.(2023·浙江嘉兴·统考一模)“距离”是数学研究的重要对象,如我们所熟悉的两点间的距离.现在我们定义一种新的距离:已知P(a,b),Q(c,d)是平面直角坐标系内的两点,我们将称作P,Q间的“L型距离”,记作L(P,Q),即.已知二次函数的图像经过平面直角坐标系内的A,B,C三点,其中A,B两点的坐标为A(-1,0),B(0,3),点C在直线x=2上运动,且满足.
(1)求L(A,B);(2)求抛物线的表达式;(3)已知是该坐标系内的一个一次函数.①若D,E是图像上的两个动点,且,求面积的最大值;②当时,若函数的最大值与最小值之和为8,求实数t的值.题型三:最大利润问题一、解答题1.(2023秋·浙江温州·九年级期末)某商店经营儿童益智玩具,已知成批购进时的单价是20元,调查发现,销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具的售价不能高于40元.设每件玩具的销售单价上涨了x元,(x为整数)月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)如果商店想要每月获得的利润不低于2520元,那么每月用于购进这种玩具的成本需要多少元?(4)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?2.(2023秋·浙江温州·九年级期末)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当时,y与x的函数关系式为.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?3.(2023秋·浙江温州·九年级期末)某水果店销售一种新鲜水果,平均每天可售出120箱,每箱盈利60元,为了扩大销售减少库存,水果店决定采取适当的降价措施,经调查发现,每箱水果每降价5元,水果店平均每天可多售出20箱.设每箱水果降价x元.(1)当时,求销售该水果的总利润;(2)设每天销售该水果的总利润为w元.①求w与x之间的函数解析式:②试判断w能否达到8200元,如果能达到,求出此时x的值;如果不能达到,求出w的最大值.4.(2022秋·浙江宁波·九年级校联考期中)在新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩.经市场调研,某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y(袋)与销售单价x(元)之间的函数关系式_____,每天所得销售利润w(元)与销售单价x(元)之间的函数关系式_____.(2)若小明想每天获得该类型口罩的销售利润2000元时,则销售单价应定为多少元?(3)求当销售单价定为多少元时,利润最大,最大利润是多少?5.(2022秋·浙江金华·九年级校联考期中)某超市销售一种商品,每千克成本为30元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如表所示:销售单价x(元/千克)55606570销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得1600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?6.(2023·浙江·九年级专题练习)抗击疫情期间,某商店购进了一种消毒用品,进价为每件8元,销售过程中发现,该商品每天的销售量(件)与每件售价(元)之间存在一次函数关系(其中,且为整数),部分对应值如下表:每件售价(元)91113每天的销售量(件)1059585(1)求与的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元.(3)设该商店销售这种消毒用品每天获利(元),问:当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?7.(2022秋·浙江金华·九年级校考期中)我市某苗木种植基地尝试用单价随天数而变化的销售模式销售某种果苗,利用天时间销售一种成本为元/株的果苗,售后经过统计得到此果苗,单日销售n(株)与第x天(x为整数)满足关系式:,销售单价m(元/株)与x之间的函数关系为(1)计算第10天该果苗单价为多少元/株?(2)求该基地销售这种果苗20天里单日所获利润y(元)关于第x(天)的函数关系式.(3)“吃水不忘挖井人”,为回馈本地居民,基地负责人决定将区30天中,其中获利最多的那天的利润全部捐出,进行“精准扶贫”,试问:基地负员人这次为“精准扶贫”捐赠多少钱?题型四:线段最值问题一、解答题1.(2022秋·浙江·九年级期中)如图,在平面直角坐标系中,已知点A坐标为,O为坐标原点,连接OA,二次函数图像从点O沿OA方向平移,顶点始终在线段OA上(包括端点O和A),平移后的抛物线与直线x=6交于点P,顶点为M.(1)若OM=5,求此时二次函数的解析式,并求不等式的解集.(2)二次函数图像平移过程中,设点M的横坐标为m,直线AP交x轴于点B,线段PB是否存在最小值?若存在,求出此时m的值;若不存在,说明理由.2.(2022秋·浙江舟山·九年级校联考期中)已知抛物线与x轴交于两点(A左B右),交y轴负半轴点C,P是第四象限抛物线上一点.(1)若,求a的值;(2)若,过点P作直线垂直于x轴,交于点Q,求线段的最大值,并求此时点P的坐标;(3)直线交y轴于点M,直线交y轴于点N,求的值.3.(2022秋·浙江温州·九年级校考期中)如图,在平面直角坐标系中,过点、两点的抛物线的顶点C在x轴正半轴上.(1)求抛物线的解析式;(2)求点C的坐标;(3)为线段AB上一点,,作轴交抛物线于点M,求PM的最大值?4.(浙江嘉兴·统考二模)如图1,抛物线交x轴于点和点B,交y轴于点.(1)求抛物线的函数表达式.(2)若点M在抛物线上,且,求点M的坐标.(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.5.(2022秋·浙江·九年级专题练习)在平面直角坐标系中,抛物
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国川菜餐饮行业资本规划与股权融资战略制定与实施研究报告
- 2025-2030年中国新型烟草行业商业模式创新战略制定与实施研究报告
- 建设工程资料归档规范
- 2024年月亮湾教案
- 石门县党建知识培训课件
- 吉林省扶余市(一实验、二实验)2023-2024学年九年级上学期期末化学测试卷
- 现代企业制度的局限性与大型企业经营模式
- 二零二五年度废弃塑料清运及资源化利用合同3篇
- 医院医患沟通技巧培训
- 2025版二零二五年度智能家居研发工程师劳动合同书3篇
- 2023年非标自动化工程师年度总结及来年计划
- 2023-2024学年甘肃省嘉峪关市酒钢三中高三上数学期末学业质量监测试题含解析
- 水利机械施工方案
- 悬挑式脚手架验收记录表
- 主变压器试验报告模板
- 电动叉车安全操作规程
- 静钻根植桩施工组织设计
- 工程精细化管理
- 柴油供货运输服务方案
- 2022年长春市中小学教师笔试试题
- 肉牛肉羊屠宰加工项目选址方案
评论
0/150
提交评论