湖南省隆回县2025届高三下学期一模考试数学试题含解析_第1页
湖南省隆回县2025届高三下学期一模考试数学试题含解析_第2页
湖南省隆回县2025届高三下学期一模考试数学试题含解析_第3页
湖南省隆回县2025届高三下学期一模考试数学试题含解析_第4页
湖南省隆回县2025届高三下学期一模考试数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省隆回县2025届高三下学期一模考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若集合,,则下列结论正确的是()A. B. C. D.2.将函数图象上每一点的横坐标变为原来的2倍,再将图像向左平移个单位长度,得到函数的图象,则函数图象的一个对称中心为()A. B. C. D.3.如图,在直三棱柱中,,,点分别是线段的中点,,分别记二面角,,的平面角为,则下列结论正确的是()A. B. C. D.4.已知函数若恒成立,则实数的取值范围是()A. B. C. D.5.已知f(x)=是定义在R上的奇函数,则不等式f(x-3)<f(9-x2)的解集为()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)6.若为虚数单位,则复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是()A. B. C. D.8.已知函数,若方程恰有两个不同实根,则正数m的取值范围为()A. B.C. D.9.在中,内角的平分线交边于点,,,,则的面积是()A. B. C. D.10.已知双曲线()的渐近线方程为,则()A. B. C. D.11.函数在上为增函数,则的值可以是()A.0 B. C. D.12.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A. B.1 C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知内角,,的对边分别为,,.,,则_________.14.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.15.已知集合,则____________.16.函数(为自然对数的底数,),若函数恰有个零点,则实数的取值范围为__________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.(Ⅰ)若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;(Ⅱ)若直线的斜率存在且不为0,四边形为平行四边形,求证:;(Ⅲ)在(Ⅱ)的条件下,判断四边形能否为矩形,说明理由.18.(12分)已知函数f(x)=x-1+x+2,记f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正实数a,b满足1a+119.(12分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.20.(12分)如图,为等腰直角三角形,,D为AC上一点,将沿BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE.(1)证明:;(2)若,求二面角的余弦值.21.(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.22.(10分)已知函数.(1)时,求不等式解集;(2)若的解集包含于,求a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由题意,分析即得解【详解】由题意,故,故选:D【点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.2、D【解析】

根据函数图象的变换规律可得到解析式,然后将四个选项代入逐一判断即可.【详解】解:图象上每一点的横坐标变为原来的2倍,得到再将图像向左平移个单位长度,得到函数的图象,故选:D【点睛】考查三角函数图象的变换规律以及其有关性质,基础题.3、D【解析】

过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案.【详解】解:因为,,所以,即过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,0,,,,,,0,,,1,,,,,,,设平面的法向量,则,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故选:D.【点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.4、D【解析】

由恒成立,等价于的图像在的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解答案.【详解】因为由恒成立,分别作出及的图象,由图知,当时,不符合题意,只须考虑的情形,当与图象相切于时,由导数几何意义,此时,故.故选:D【点睛】此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.5、C【解析】

由奇函数的性质可得,进而可知在R上为增函数,转化条件得,解一元二次不等式即可得解.【详解】因为是定义在R上的奇函数,所以,即,解得,即,易知在R上为增函数.又,所以,解得.故选:C.【点睛】本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题.6、D【解析】

根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解析】

先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.8、D【解析】

当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,,根据图像得到答案.【详解】当时,,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,,故,,,,.根据图像知:.故选:.【点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.9、B【解析】

利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,则,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面积为.故选:B.【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.10、A【解析】

根据双曲线方程(),确定焦点位置,再根据渐近线方程得到求解.【详解】因为双曲线(),所以,又因为渐近线方程为,所以,所以.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.11、D【解析】

依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【点睛】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.12、D【解析】

如图所示建立直角坐标系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,,,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【详解】由正弦定理得,,.故答案为:.【点睛】本题考查了正弦定理求角,三角恒等变换,属于基础题.14、【解析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为•2πR,则AB弦的长度大于等于半径长度的概率P==;故答案为:.15、【解析】

根据并集的定义计算即可.【详解】由集合的并集,知.故答案为:【点睛】本题考查集合的并集运算,属于容易题.16、【解析】

令,则,恰有四个解.由判断函数增减性,求出最小值,列出相应不等式求解得出的取值范围.【详解】解:令,则,恰有四个解.有两个解,由,可得在上单调递减,在上单调递增,则,可得.设的负根为,由题意知,,,,则,.故答案为:.【点睛】本题考查导数在函数当中的应用,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)证明见解析;(Ⅲ)不能,证明见解析【解析】

(Ⅰ)计算得到故,,,,计算得到面积.(Ⅱ)设为,联立方程得到,计算,同理,根据得到,得到证明.(Ⅲ)设中点为,根据点差法得到,同理,故,得到结论.【详解】(Ⅰ),,故,,,.故四边形的面积为.(Ⅱ)设为,则,故,设,,故,,同理可得,,故,即,,故.(Ⅲ)设中点为,则,,相减得到,即,同理可得:的中点,满足,故,故四边形不能为矩形.【点睛】本题考查了椭圆内四边形的面积,形状,根据四边形形状求参数,意在考查学生的计算能力和综合应用能力.18、(Ⅰ){x|-3≤x≤2}(Ⅱ)见证明【解析】

(Ⅰ)由题意结合不等式的性质零点分段求解不等式的解集即可;(Ⅱ)首先确定m的值,然后利用柯西不等式即可证得题中的不等式.【详解】(Ⅰ)①当x>1时,f(x)=(x-1)+(x+2)=2x+1≤5,即x≤2,∴1<x≤2;②当-2≤x≤1时,f(x)=(1-x)+(x+2)=3≤5,∴-2≤x≤1;③当x<-2时,f(x)=(1-x)-(x+2)=-2x-1≤5,即x≥-3,∴-3≤x<-2.综上所述,原不等式的解集为{x|-3≤x≤2}.(Ⅱ)∵f(x)=x-1当且仅当-2≤x≤1时,等号成立.∴f(x)的最小值m=3.∴[(即2a当且仅当2a×1又1a+1b=∴2a【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,绝对值三角不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.19、(1)(2)【解析】

(1)把代入,利用零点分段讨论法求解;(2)对任意成立转化为求的最小值可得.【详解】解:(1)当时,不等式可化为.讨论:①当时,,所以,所以;②当时,,所以,所以;③当时,,所以,所以.综上,当时,不等式的解集为.(2)因为,所以.又因为,对任意成立,所以,所以或.故实数的取值范围为.【点睛】本题主要考查含有绝对值不等式的解法及恒成立问题,恒成立问题一般是转化为最值问题求解,侧重考查数学建模和数学运算的核心素养.20、(1)见解析;(2)【解析】

(1)由折叠过程知与平面垂直,得,再取中点,可证与平面垂直,得,从而可得线面垂直,再得线线垂直;(2)由已知得为中点,以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,由已知求出线段长,得出各点坐标,用平面的法向量计算二面角的余弦.【详解】(1)易知与平面垂直,∴,连接,取中点,连接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中点,令,则,由,,∴,解得,故.以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,如图,则,,,设平面的法向量为,则,取,则.又易知平面的一个法向量为,.∴二面角的余弦值为.【点睛】本题考查证明线线垂直,考查用空间向量法求二面角.证线线垂直,一般先证线面垂直,而证线面垂直又要证线线垂直,注意线线垂直、线面垂直及面面垂直的转化.求空间角,常用方法就是建立空间直角坐标系,用空间向量法求空间角.21、(1);(2)见解析.【解析】

(1)令,,利用可求得数列的通项公式,由此可得出数列的通项公式;(2)求得,利用裂项相消法求得,进而可得出结论.【详解】(1)令,,当时,;当时,,则,故;(2),.【点睛】本题考查利用求通项,同时也考查了裂项相消法求和,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论