版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
涟源市2023-2024年度高一上学期分班选科考试数学试题吋间:120分钟;满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A B.C.D.2.若,且为第一象限角,则的值为()A. B. C. D.3.函数的零点所在的区间为()A. B. C. D.4.若,则的最小值为A.2 B.4 C.6 D.85.已知命题,,则命题的否定是()A., B.,C., D.,6.下列函数中,是奇函数且在区间上单调递增的是()A. B.C. D.7.已知,则的大小关系为()A. B.C D.8.甲、乙分别解关于x的不等式.甲抄错了常数b,得到解集为;乙抄错了常数c,得到解集为.如果甲、乙两人解不等式的过程都是正确的,那么原不等式解集应为()A.B.C. D.二、多项选择题:本题共4小题,毎小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知实数,其中,则下列关系中恒成立的是()A. B.C. D.10.下列说法正确的是()A.函数的图像恒过定点B.是的充分不必要条件C.函数的最小正周期为D.函数的最小值为11.若,,则()A.B.C. D.12.已知函数则以下说法正确的是()A.若,则是上的减函数B.若,则有最小值C.若,则的值域为D.若,则存在,使得三、填空题:本大题共4小题,每小题5分,共20分.13.。14.已知,则______________.15.已知扇形的圆心角为,弧长为,则该扇形的面积为__________.16.某公园设计了一座八边形的绿化花园,它的主体造型平面图(如图2)是由两个相同的矩形ABCD和EFGH构成的面积为的十字型区域,计划在正方形MNPQ上建一座花坛,造价为99元/;在四个空角(图中四个三角形)上铺草坪,造价为8元/;在四个矩形(图中阴影部分)上不做任何设计.设总造价为S(单位:元),AD长为x(单位:m),则绿化花园总造价S的最小值为______元.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题10分)计算:(1);(2)求函数f(x)=+的定义域。18.(本题12分)已知.(1)求的值;(2)已知,求的值.19.(本题12分)已知函数,其中且.(1)判断的奇偶性;(2)若,解关于x的不等式.20.(本题12分)已知函数.(1)求的最小正周期;(2)求在区间上的最小值及单调减区间.21.(本题12分)某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为100吨,最多为600吨,月处理成本(元)与月处理量x(吨)之间的函数关系可近似地表示为.(1)该单位每月处理量为多少吨时,才能使月处理成本最低?月处理成本最低多少元?(2)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?每吨的平均处理成本最低是多少元?22.(本题12分)已知函数是定义在上奇函数,当时,.(1)求的值;(2)求在上的解析式;(3)若函数有零点,求实数的取值范围.涟源市2023-2024年度高一上学期分班选课考科数学试题参考答案吋间:120分钟;满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.C.3.A.4.A.5.B.6.D.7.A.8.A.二、多项选择题:本题共4小题,毎小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.A.C.D.10.A.B.C.11.A.C.D.12.A.B.C.三、填空题:本大题井4小题,每小题5分,共20分.13.。【答案】314.已知,则______________.【答案】315.已知扇形的圆心角为,弧长为,则该扇形的面积为__________.【答案】16.某公园设计了一座八边形的绿化花园,它的主体造型平面图(如图2)是由两个相同的矩形ABCD和EFGH构成的面积为的十字型区域,计划在正方形MNPQ上建一座花坛,造价为99元/;在四个空角(图中四个三角形)上铺草坪,造价为8元/;在四个矩形(图中阴影部分)上不做任何设计.设总造价为S(单位:元),AD长为x(单位:m),则绿化花园总造价S的最小值为______元.【答案】1440四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1);(2)求函数f(x)=+的定义域。【答案】(1)-(2)18.已知.(1)求的值;(2)已知,求的值.【答案】(1)(2)【解析】【小问1详解】解:由诱导公式得,所以.【小问2详解】由(1)得,又,即,所以.19.已知函数,其中且.(1)判断的奇偶性;(2)若,解关于x的不等式.【答案】(1)奇函数(2)【解析】【小问1详解】因为的定义域关于原点对称,因为,所以为奇函数;【小问2详解】当时,由可得,所以,故,故不等式的解集为.20.已知函数.(1)求的最小正周期;(2)求在区间上的最小值及单调减区间.【答案】(1)最小正周期为;(2);的单调递减区间为.【解析】【详解】(1).所以的最小正周期为.(2)因为,所以,所以当,即时,函数取得最小值.由,得,所以函数的单调递减区间为.21某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为100吨,最多为600吨,月处理成本(元)与月处理量x(吨)之间的函数关系可近似地表示为.(1)该单位每月处理量为多少吨时,才能使月处理成本最低?月处理成本最低多少元?(2)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?每吨的平均处理成本最低是多少元?【答案】(1)该单位每月处理量为200吨时,才能使月处理成本最低,月处理成本最低是60000元;(2)该单位每月处理量为400吨时,每吨的平均处理成本最低,为200元.【解析】【小问1详解】该单位每月的月处理成本:,因,函数在区间上单调递减,在区间上单调递增,从而得当时,函数取得最小值,即.所以该单位每月处理量为200吨时,才能使月处理成本最低,月处理成本最低是60000元.【小问2详解】由题意可知:,每吨二氧化碳的平均处理成本为:当且仅当,即时,等号成立.所以该单位每月处理量为400吨时,每吨的平均处理成本最低,为200元.22.已知函数是定义在上奇函数,当时,.(1)求的值;(2)求在上的解析式;(3)若函数有零点,求实数的取值范围.【答案】(1)1(2)(3)【解析】【小问1详解】由于函数是定义在上的奇函数,所以.验证成立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国川菜餐饮行业资本规划与股权融资战略制定与实施研究报告
- 2025-2030年中国新型烟草行业商业模式创新战略制定与实施研究报告
- 建设工程资料归档规范
- 2024年月亮湾教案
- 石门县党建知识培训课件
- 吉林省扶余市(一实验、二实验)2023-2024学年九年级上学期期末化学测试卷
- 现代企业制度的局限性与大型企业经营模式
- 二零二五年度废弃塑料清运及资源化利用合同3篇
- 医院医患沟通技巧培训
- 2025版二零二五年度智能家居研发工程师劳动合同书3篇
- 2023年非标自动化工程师年度总结及来年计划
- 2023-2024学年甘肃省嘉峪关市酒钢三中高三上数学期末学业质量监测试题含解析
- 水利机械施工方案
- 悬挑式脚手架验收记录表
- 主变压器试验报告模板
- 电动叉车安全操作规程
- 静钻根植桩施工组织设计
- 工程精细化管理
- 柴油供货运输服务方案
- 2022年长春市中小学教师笔试试题
- 肉牛肉羊屠宰加工项目选址方案
评论
0/150
提交评论