八年级数学上册第十五章分式15.2分式的运算15.2.1分式的乘除第1课时分式的乘除法教案新版新人教版_第1页
八年级数学上册第十五章分式15.2分式的运算15.2.1分式的乘除第1课时分式的乘除法教案新版新人教版_第2页
八年级数学上册第十五章分式15.2分式的运算15.2.1分式的乘除第1课时分式的乘除法教案新版新人教版_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Page115.2分式的运算15.2.1分式的乘除第1课时分式的乘除法1.理解并驾驭分式的乘除法则.2.运用法则进行运算,能解决一些与分式有关的实际问题.重点驾驭分式的乘除运算.难点分子、分母为多项式的分式乘除法运算.一、复习导入1.分数的乘除法的法则是什么?2.计算:eq\f(3,5)×eq\f(15,12);eq\f(3,5)÷eq\f(15,2).由分数的运算法则知eq\f(3,5)×eq\f(15,12)=eq\f(3×15,5×12);eq\f(3,5)÷eq\f(15,2)=eq\f(3,5)×eq\f(2,15)=eq\f(3×2,5×15).3.什么是倒数?我们在小学学习了分数的乘除法,对于分式如何进行计算呢?这就是我们这节要学习的内容.二、探究新知问题1:一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b时,当容器的水占容积的eq\f(m,n)时,水面的高度是多少?问题2:大拖拉机m天耕地ahm2,小拖拉机n天耕地bhm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?问题1求容积的高eq\f(V,ab)·eq\f(m,n),问题2求大拖拉机的工作效率是小拖拉机的工作效率的eq\f(a,m)÷eq\f(b,n)倍.依据上面的计算,请同学们总结一下对分式的乘除法的法则是什么?分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.eq\f(a,b)·eq\f(c,d)=eq\f(a·c,b·d);eq\f(a,b)÷eq\f(c,d)=eq\f(a,b)·eq\f(d,c)=eq\f(a·d,b·c).三、举例分析例1计算:(1)eq\f(4x,3y)·eq\f(y,2x3);(2)eq\f(ab3,2c2)÷eq\f(-5a2b2,4cd).分析:这道例题就是干脆应用分式的乘除法法则进行运算.应当留意的是运算结果应约分到最简,还应留意在计算时跟整式运算一样,先推断运算符号,再计算结果.解:(1)eq\f(4x,3y)·eq\f(y,2x3)=eq\f(4xy,6x3y)=eq\f(2,3x2);(2)eq\f(ab3,2c2)÷eq\f(-5a2b2,4cd)=eq\f(ab3,2c2)·eq\f(4cd,-5a2b2)=-eq\f(4ab3cd,10a2b2c2)=-eq\f(2bd,5ac).例2计算:(1)eq\f(a2-4a+4,a2-2a+1)·eq\f(a-1,a2-4);(2)eq\f(1,49-m2)÷eq\f(1,m2-7m).分析:这两题是分子与分母是多项式的状况,首先要因式分解,然后运用法则.解:(1)原式eq\f((a-2)2,(a-1)2)·eq\f(a-1,(a+2)(a-2))=eq\f(a-2,(a-1)(a+2));(2)原式eq\f(1,(7-m)(7+m))÷eq\f(1,m(m-7))=eq\f(1,(7-m)(7+m))·eq\f(m(m-7),1)=-eq\f(m,m+7).例3“丰收1号”小麦试验田边长为a米(a>1)的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a-1)米的正方形,两块试验田的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?分析:本题的实质是分式的乘除法的运用.解:(1)略.(2)eq\f(500,(a-1)2)÷eq\f(500,a2-1)=eq\f(500,(a-1)2)·eq\f(a2-1,500)=eq\f(a+1,a-1).“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的eq\f(a+1,a-1)倍.四、随堂练习1.计算:(1)eq\f(c2,ab)·eq\f(a2b2,c);(2)-eq\f(n2,2m)·eq\f(4m2,5n3);(3)eq\f(y,7x)÷(-eq\f(2,x));(4)-8xy÷eq\f(2y,5x);(5)-eq\f(a2-4,a2-2a+1)·eq\f(a2-1,a2+4a+4);(6)eq\f(y2-6y+9,y+2)÷(3-y).答案:(1)abc;(2)-eq\f(2m,5n);(3)-eq\f(y,14);(4)-20x2;(5)-eq\f((a+1)(a-2),(a-1)(a+2));(6)eq\f(3-y,y+2).2.教材第137页练习1,2,3题.五、课堂小结(1)分式的乘除法法则;(2)运用法则时留意符号的改变;(3)因式分解在分式乘除法中的应用;(4)步骤要完整,结果要最简.最终结果中的分子、分母既可保持乘积的形式,也可以写成一个多项式,如eq\f((a-1)2,a)或eq\f(a2-2a+1,a).六、布置作业教材第146页习题15.2第1,2题.本节课从两个具有实际背景的问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论