芜湖市重点中学2025届高三二诊模拟考试数学试卷含解析_第1页
芜湖市重点中学2025届高三二诊模拟考试数学试卷含解析_第2页
芜湖市重点中学2025届高三二诊模拟考试数学试卷含解析_第3页
芜湖市重点中学2025届高三二诊模拟考试数学试卷含解析_第4页
芜湖市重点中学2025届高三二诊模拟考试数学试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

芜湖市重点中学2025届高三二诊模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是()A. B. C. D.2.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.3.已知实数满足约束条件,则的最小值是A. B. C.1 D.44.下列函数中,值域为的偶函数是()A. B. C. D.5.已知正四面体的棱长为,是该正四面体外接球球心,且,,则()A. B.C. D.6.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有()A.480种 B.360种 C.240种 D.120种7.已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为()A. B. C. D.48.若θ是第二象限角且sinθ=,则=A. B. C. D.9.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为()A. B.6 C. D.10.设是虚数单位,若复数,则()A. B. C. D.11.已知,,则的大小关系为()A. B. C. D.12.如图,在等腰梯形中,,,,为的中点,将与分别沿、向上折起,使、重合为点,则三棱锥的外接球的体积是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为___________.14.已知函数,则关于的不等式的解集为_______.15.若在上单调递减,则的取值范围是_______16.已知,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的左、右焦点分别为,,焦距为2,且经过点,斜率为的直线经过点,与椭圆交于,两点.(1)求椭圆的方程;(2)在轴上是否存在点,使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由.18.(12分)已知的内角,,的对边分别为,,,且.(1)求;(2)若的面积为,,求的周长.19.(12分)已知中,角所对边的长分别为,且(1)求角的大小;(2)求的值.20.(12分)已知等差数列中,,数列的前项和.(1)求;(2)若,求的前项和.21.(12分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).(1)若直线l与曲线C相交于A、B两点,且,试求实数m值.(2)设为曲线上任意一点,求的取值范围.22.(10分)等差数列的前项和为,已知,.(1)求数列的通项公式;(2)设数列{}的前项和为,求使成立的的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.2、C【解析】

由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.3、B【解析】

作出该不等式组表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所以,故选B.4、C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.考点:1、函数的奇偶性;2、函数的值域.5、A【解析】

如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【详解】如图设平面,球心在上,由正四面体的性质可得:三角形是正三角形,,,在直角三角形中,,,,,,因为为重心,因此,则,因此,因此,则,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.6、B【解析】

将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,∴共有360种.故选:B【点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.7、D【解析】

如图所示:过点作垂直准线于,交轴于,则,设,,则,利用均值不等式得到答案.【详解】如图所示:过点作垂直准线于,交轴于,则,设,,则,当,即时等号成立.故选:.【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.8、B【解析】由θ是第二象限角且sinθ=知:,.所以.9、D【解析】

根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.【详解】如图,该几何体为正方体去掉三棱锥,所以该几何体的体积为:,故选:D【点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.10、A【解析】

结合复数的除法运算和模长公式求解即可【详解】∵复数,∴,,则,故选:A.【点睛】本题考查复数的除法、模长、平方运算,属于基础题11、D【解析】

由指数函数的图像与性质易得最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较和的大小关系,进而得解.【详解】根据指数函数的图像与性质可知,由对数函数的图像与性质可知,,所以最小;而由对数换底公式化简可得由基本不等式可知,代入上式可得所以,综上可知,故选:D.【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.12、A【解析】

由题意等腰梯形中的三个三角形都是等边三角形,折叠成的三棱锥是正四面体,易求得其外接球半径,得球体积.【详解】由题意等腰梯形中,又,∴,是靠边三角形,从而可得,∴折叠后三棱锥是棱长为1的正四面体,设是的中心,则平面,,,外接球球心必在高上,设外接球半径为,即,∴,解得,球体积为.故选:A.【点睛】本题考查求球的体积,解题关键是由已知条件确定折叠成的三棱锥是正四面体.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设直线l的方程为,,联立直线l与抛物线C的方程,得到A,B点横坐标的关系式,代入到中,解出t的值,即可求得直线l的方程【详解】设直线.由题设得,故,由题设可得.

由可得,

则,从而,得,所以l的方程为,故答案为:【点睛】本题主要考查了直线的方程,抛物线的定义,抛物线的简单几何性质,直线与抛物线的位置关系,属于中档题.14、【解析】

判断的奇偶性和单调性,原不等式转化为,运用单调性,可得到所求解集.【详解】令,易知函数为奇函数,在R上单调递增,,即,∴∴,即x>故答案为:【点睛】本题考查函数的奇偶性和单调性的运用:解不等式,考查转化思想和运算能力,属于中档题.15、【解析】

由题意可得导数在恒成立,解出即可.【详解】解:由题意,,当时,显然,符合题意;当时,在恒成立,∴,∴,故答案为:.【点睛】本题主要考查利用导数研究函数的单调性,属于中档题.16、【解析】

先求,再根据的范围求出即可.【详解】由题可知,故.故答案为:.【点睛】本题考查分段函数函数值的求解,涉及对数的运算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在;实数的取值范围是【解析】

(1)根据椭圆定义计算,再根据,,的关系计算即可得出椭圆方程;(2)设直线方程为,与椭圆方程联立方程组,求出的范围,根据根与系数的关系求出的中点坐标,求出的中垂线与轴的交点横,得出关于的函数,利用基本不等式得出的范围.【详解】(1)由题意可知,,.又,,,椭圆的方程为:.(2)若存在点,使得以,为邻边的平行四边形是菱形,则为线段的中垂线与轴的交点.设直线的方程为:,,,,,联立方程组,消元得:,△,又,故.由根与系数的关系可得,设的中点为,,则,,线段的中垂线方程为:,令可得,即.,故,当且仅当即时取等号,,且.的取值范围是,.【点睛】本题主要考查了椭圆的性质,考查直线与椭圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1);(2).【解析】

(1)利用正弦定理将目标式边化角,结合倍角公式,即可整理化简求得结果;(2)由面积公式,可以求得,再利用余弦定理,即可求得,结合即可求得周长.【详解】(1)由题设得.由正弦定理得∵∴,所以或.当,(舍)故,解得.(2),从而.由余弦定理得.解得.∴.故三角形的周长为.【点睛】本题考查由余弦定理解三角形,涉及面积公式,正弦的倍角公式,应用正弦定理将边化角,属综合性基础题.19、(1);(2).【解析】

(1)正弦定理的边角转换,以及两角和的正弦公式展开,特殊角的余弦值即可求出答案;(2)构造齐次式,利用正弦定理的边角转换,得到,结合余弦定理得到【详解】解:(1)由已知,得又∵∴∴,因为得∵∴.(2)∵又由余弦定理,得∴【点睛】1.考查学生对正余弦定理的综合应用;2.能处理基本的边角转换问题;3.能利用特殊的三角函数值推特殊角,属于中档题20、(1),;(2).【解析】

(1)由条件得出方程组,可求得的通项,当时,,可得,当时,,得出是以1为首项,2为公比的等比数列,可求得的通项;(2)由(1)可知,,分n为偶数和n为奇数分别求得.【详解】(1)由条件知,,,当时,,即,当时,,是以1为首项,2为公比的等比数列,;(2)由(1)可知,,当n为偶数时,当n为奇数时,综上,【点睛】本题考查等差数列和等比数列的通项的求得,以及其前n项和,注意分n为偶数和n为奇数两种情况分别求得其数列的和,属于中档题.21、(1)或;(2).【解析】

(1)将曲线的极坐标方程化为直角坐标方程,在直角坐标条件下求出曲线的圆心坐标和半径,将直线的参数方程化为普通方程,由勾股定理列出等式可求的值;(2)将圆化为参数方程形式,代入由三角公式化简可求其取值范围.【详解】(1)曲线C的极坐标方程是化为直角坐标方程为:直线的直角坐标方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论