2024-2025学年年七年级数学人教版下册专题整合复习卷12.1 轴对称水平测试(含答案)_第1页
2024-2025学年年七年级数学人教版下册专题整合复习卷12.1 轴对称水平测试(含答案)_第2页
2024-2025学年年七年级数学人教版下册专题整合复习卷12.1 轴对称水平测试(含答案)_第3页
2024-2025学年年七年级数学人教版下册专题整合复习卷12.1 轴对称水平测试(含答案)_第4页
2024-2025学年年七年级数学人教版下册专题整合复习卷12.1 轴对称水平测试(含答案)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年年七年级数学人教版下册专题整合复习卷12.1轴对称水平测试(含答案)12.1轴对称一、选择题1.观察下列四个图案,其中为轴对称图形的是().(A) (B) (C) (D)2.下列文字图案中,是轴对称图形的是()高高山流水A.B.C.D.3.下列图形中,不是轴对称图形的是 A. B. C. D.4.下列“表情”中属于轴对称图形的是()A.B. C. D.5.将一张长与宽的比为2∶1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是()图①图②图③图④A.B.C.D.6.下列四副图案中,不是轴对称图形的是()A.B.C.D.7.下列美丽的图案中,是轴对称图形的是()A.A.B.C.D.8.下列图案中属于轴对称图形的是()A.A.B.C.D.9.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()上折上折右折沿虚线剪开展开A.A.B.C.D.10.下列图形中,为轴对称图形的是()A.B.C.D.二、填空题11如图,如果与关于轴对称,那么点的对应点的坐标为.yxyxCABO1234-1-2-3-412345BACDFE12.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是cm2.13.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是14在标点符号“,?——……《》”中不是轴对称图形的是15小明星期天上午复习功课,不知不觉半天过去了,猛摔抬头看见镜子中后墙上的挂钟已是1点20分,请问实际时间是16角是轴对称图形,它的对称轴是.线段是轴对称图形,它的对称轴是。三、解答题17如图1,∠ABC=50º,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连结EC,则∠AEC的度数是?18如图2,已知AB=AC,∠A=36º,AB的中垂线MN交AC于点D,交AB于点M。求证:(1)BD平分∠ABC;(2)⊿BCD为等腰三角形。19如图4,在⊿ABC中∠ACB=90º,AC=BC,D为⊿ABC形外一点且AD=BD,DE⊥AC交CA的延长线于E。求证:DE=AE+BC。

四、探究题20元旦联欢会上,同学们在礼堂四周摆丁一圈长条桌子,其中北边条桌上摆满了苹果,东边条桌上摆满了香蕉,礼堂中间放一把椅子B,游戏规则是这样的:甲、乙二人从A处(如图2)同时出发,先去拿苹果再去拿香蕉,然后回到B处,谁先坐到椅子上谁赢.小张和小李比赛,比赛一开始,只见小张直奔东北两张条桌的交点肘处,左手抓苹果,右手拿香蕉,回头直奔曰处,可是还未跑到B处,只见小李已经手捧苹果和香蕉稳稳地坐在B处的椅子上了.如果小李不比小张跪得快.是不是还有捷径呢?图2参考答案一、选择题1.B2.B3.A4.C5.A6.A7.C8.C9.B10.D二、填空题11、(-1,3)12、613、14、,和?15、10点40分16、角平分线所在的直线它成在的直线和它的垂直平分线三、解答题17、解:∵∠AEC是⊿CDE的一个外角∴∠AEC=∠EDC+∠C∵AD垂直平分BC,∴BE=CE,∠EBC=∠C又∠ABC=50º,BE平分∠ABC,∠C=∠EBC=25º则∠AEC=90º+25º=115º18、证明:∵AB=AC,∠A=36º∴∠ABC=∠C=72º∵MN为AB的中垂线∴AD=BD则∠A=∠1=36º∴∠2=36º,∠BDC=180º-36º-72º=72º,因此,BD平分∠ABC⊿BCD为等腰三角形19、证明:连CD∵AC=BCAD=BD则CD垂直平分AB∠ACD=45º又∵DE⊥CE,∠CDE=90º-45º=45º∴DE=CE=AC+AE=AE+BC四,探究题20、【分析】如图3,假设北边和东边条桌各为一个平面镜,光线经过两次反射到达B点.因此,分别以北条桌和东条桌为对称轴,找到A,B的对称点,,连接C,交两长条桌于C,D两点,则折线ACDB就是捷径.你明白了吗?图313.1轴对称,13.2画轴对称图形专题一轴对称图形1.【2012·连云港】下列图案是轴对称图形的是()2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.13.1轴对称1.轴对称图形(1)概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线叫做这个图形的对称轴.(2)理解:轴对称图形是对一个图形而言,是一种具有特殊性质的图形,它能被一条直线分割成两部分,沿这条直线折叠时,其中一部分能与这个图形的另一部分重合.(3)对称轴:对称轴是一条直线,有的轴对称图形只有一条对称轴,而有些轴对称图形有几条甚至无数条对称轴.“圆的对称轴是圆的一条直径”为什么不对呢?对称轴是一条直线,而直径是线段,所以圆的对称轴是直径所在的直线.并且圆有无数条对称轴.一定要注意哦!解技巧轴对称图形的识别判断一个图形是否是轴对称图形可以根据定义,把图形沿某一条直线折叠,看直线两旁的部分是否能够重合.另外还可以观察是否有对称轴,能找到对称轴也说明是轴对称图形.【例1】下列图形中,是轴对称图形的是().A.①② B.③④C.②③ D.①④解析:观察图形,①④的图形都能找到一条直线,沿这条直线对折,图形两边能够重合,而②③的图形中找不出这样的直线,因此只有①④是轴对称图形.答案:D2.轴对称(1)概念:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称.这条直线叫做对称轴.(2)含义:轴对称图形是两个图形之间的关系,这两个图形沿一条直线折叠后能够互相重合,即全等.(3)对称点:折叠后重合的对应点叫对称点,两个图形正是由无数个对称点组合而成的,也正是无数个对称点的重合构成了图形的重合.(4)与轴对称图形的异同:a.区别:轴对称图形指的是一个图形本身的特点,而轴对称指的是两个图形之间的关系.b.联系:都关于某条直线对称,如果把成轴对称的两个图形看成一个整体图形,那么它就是一个轴对称图形,如果把一个轴对称图形沿着对称轴分成两个图形,那么这两个图形关于这条轴对称.析规律轴对称的特点图形的轴对称和平移一样,都是图形位置的变换,共同的特点是变化后图形的大小、形状都没有改变,不同点是变换的方式不同,所以性质也不尽相同,判断的方法关键看变换方式.【例2】如图所示,下列每组中两个图形成轴对称的是().解析:图A、B、C沿某一条直线折叠,左右两个图形不能重合,所以它们不构成轴对称.如图,D沿右图所画直线折叠,左右两个图形能够重合,所以成轴对称.答案:D3.线段的垂直平分线(1)概念:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)性质:线段垂直平分线上的点与这条线段两个端点的距离相等.(3)判定:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(4)线段的垂直平分线可以看作是到线段两端点距离相等的所有点的集合.这是线段垂直平分线的集合定义.谈重点线段垂直平分线及性质与判定的理解和应用①线段的垂直平分线必须同时具备两个条件:过线段的中点和垂直于这条线段.②线段是轴对称图形,线段的垂直平分线是线段其中的一条对称轴.③线段垂直平分线的性质是证明线段相等的一种方法,运用过程中可以省去证明三角形全等,使得过程更简便.【例3】已知线段AB,直线CD是AB的垂线,垂足为O,且OA=OB,若点M在直线CD上,则MA=__________;若NA=NB,则点N在__________.解析:本题是线段垂直平分线性质和判定的最基本的应用,根据CD⊥AB,又经过线段AB的中点O,所以CD为线段AB的垂直平分线,所以有MA=MB,因为NA=NB,由线段垂直平分线的判定定理可知点N在直线CD上,即线段AB的垂直平分线上.答案:MB线段AB的垂直平分线CD上4.线段垂直平分线的画法(1)折叠法:将线段两端点对齐,沿线段折叠重合,折痕就是线段的垂直平分线.(2)尺规作图法:如图,①分别以A、B为圆心,以大于eq\f(1,2)AB长为半径画弧,两弧相交于C、D两点;②作直线CD;CD即为所求作的直线.【例4】如图,在某条公路的同旁有两座城市A、B,为了方便市民就医治疗,政府决定在公路边建一所医院,这所医院建在什么位置,能使两座城市到这个医院的路程一样长?分析:两座城市A、B到这个医院的路程一样长,说明这所医院要建在AB的垂直平分线上,又要在公路边,所以应是AB垂直平分线与公路的交点处.解:如图所示,(1)连接AB,分别以A,B为圆心,以大于eq\f(1,2)AB长为半径画弧,两弧相交于C,D两点;(2)作直线CD,交公路所在直线于P,则点P即为所建医院的位置.5.轴对称(轴对称图形)的性质(1)关于某条直线轴对称的两个图形全等,对应线段、对应角相等,只要是对应的部分就全等.(2)对称轴是任何一对对应点所连线段的垂直平分线.(3)对应线段所在的直线的交点在对称轴上.谈重点成轴对称的两个图形的性质特征(1)成轴对称的两个图形沿对称轴折叠能够相互重合,所以它们一定是全等的,但全等的两个图形不一定是轴对称图形.(2)成轴对称的两个图形能够重合,所以它们的周长、面积也相等,正如全等的两个三角形对应边上的高、中线也相等一样.【例5】如图,△ABC和△A′B′C′关于直线l对称,下列结论中:①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上.正确的有().A.4个 B.3个 C.2个 D.1个解析:①由轴对称性质可知,关于某条直线对称的两图形重合,所以△ABC≌△A′B′C′;②由轴对称性质可知对应角∠BAC=∠B′A′C′,等号两边同时都加上∠CAC′,可得∠BAC′=∠B′AC;③点C与点C′为对称点.对称轴垂直平分对称点连线,所以也正确;④BC和B′C′为对应线段,由性质可知,所在直线的交点一定在对称轴上.由以上分析可知①②③都正确,只有④错误,所以选B.答案:B6.轴对称(轴对称图形)对称轴的画法如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对对应点,作出连接它们的线段的垂直平分线就可以得到这两个图形的对称轴.同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.(1)两个图形成轴对称或轴对称图形的对称轴是对应点连线的垂直平分线,这是画图形的对称轴的依据.(2)作已知图形的对称轴的步骤:找特殊对称点→作对称的两点的垂直平分线.【例6】如图,试作出下列图形中的一条对称轴.分析:作图的关键在于找到对称点,等边三角形ABC中B、C是一对对称点,所以作BC的垂直平分线即可得到△ABC的一条对称轴;同样在正五边形ABCDE中,B与E、C与D是对称点,所以作BE或CD的对称点都能得到正五边形ABCDE的对称轴.解:如图.7.线段垂直平分线性质的应用线段垂直平分线上的点到线段两端点的距离相等,在这个性质中,它的条件是“一条直线垂直平分一条线段”,结论是“这条直线上的任意一点到线段两端点的距离相等”,它是证明线段相等常用的一种方法.析规律利用线段垂直平分线的性质证明线段相等用线段垂直平分线性质解决问题,一般需要连接直线上某一点与线段两端点的线段(常用的添加辅助线的方法),从而由性质可以直接得到相等的两条线段,因为它省去了证明三角形全等,所以较为简便,它通常和三角形周长,等腰三角形知识相结合运用.8.线段垂直平分线判定的应用与一条线段两端点距离相等的点,在这条线段的垂直平分线上,它的题设是“一个点到一条线段的两个端点的距离相等”,结论是“这个点在这条线段的垂直平分线上”,这与线段垂直平分线性质的题设和结论正好相反;线段垂直平分线的判定是为数不多的证明点在线上的定理,很多时候用在作图中,用来确定到两固定点距离相等的点.破疑点判定线段垂直平分线的方法判断一条直线是线段的垂直平分线时,必须证明该直线上有两个点到线段两端点的距离相等,因为只有两点才能确定一条直线.【例7】如图1,△ABC中,EF垂直平分AB,GH垂直平分AC,设EF与GH相交于O,则点O与边BC的关系如何?请用一句话表示:________________________________. 图1 图2解析:如图2,连接OA、OB、OC,因为EF垂直平分AB,所以OA=OB.因为GH垂直平分AC,所以OA=OC.所以OB=OC,即点O到边BC两端点的距离相等.答案:点O到边BC两端点的距离相等(答案不唯一,也可以说成点O在BC的垂直平分线上)【例8】(综合应用题)如图,AD为△ABC的角平分线,AE=AF,请判断AD是否是EF的垂直平分线?如果不是请说明理由,如果是,请给予证明.解:AD是EF的垂直平分线.证明:因为AD平分∠BAC,所以∠BAD=∠CAD.在△AED和△AFD中,eq\b\lc\{\rc\(\a\vs4\al\co1(AE=AF,,∠BAD=∠CAD,,AD=AD,))所以△AED≌△AFD.所以DE=DF,所以D在EF的垂直平分线上.同样AE=AF,A也在EF的垂直平分线上.所以AD是EF的垂直平分线.9.生活中的镜面对称生活中的倒影,镜子中的影像是日常生活中最常见的轴对称,它们都具备轴对称的特点,如果沿某一条直线折叠一样能够重合.因而实物和图形大小形状也完全一样.只要注意观察,会有很多有趣的现象和规律.解技巧镜面问题的解决方法①镜面对称问题可以看作是沿镜子的左右边沿轴对称,镜子的边沿所在的直线就是对称轴,判断标准是沿镜子左或右边沿折叠就会重合,如果是在透明纸上的图案,从反面看到的影像,就是原来的图案;②对于倒影问题,水面所在的直线是对称轴,沿这条直线折叠观察,就可得到原来图案.【例9-1】小明从镜子里看到镜子对面电子钟的像如下图所示,则实际时间是().A.21:10 B.10:21C.10:51 D.12:01解析:镜面中的影像问题是以镜面的左边沿或右边沿所在的直线为对称轴的轴对称,假定最左侧或右侧有一条直线为对称轴,沿此直线折叠都会得到10:51,或将此图案从反面观察,也可得到10:51.答案:C【例9-2】一个汽车车牌在水中的倒影为,则该车的牌照号码是__________.解析:只需将倒影沿图案上沿或下沿某一条直线翻折,即可得到该车牌的号码为W5236499.同样在纸上也可以从反面,倒看也能得到它的轴对称图形W5236499.答案:W5236499.10.折叠问题中的轴对称折叠问题是近几年中考的热点,它主要分为两类:(1)一类是图形的折叠问题,一般是将矩形、正方形、三角形沿某条线段所在的直线折叠,求角的度数.这类问题,条件隐蔽,要仔细观察图形,善于运用隐含条件解决问题.(2)另一类是折纸问题,大多是将一个正方形纸片,经过几次轴对称折叠,挖取其中的一小部分,观察展开后的图形,观察得到的是哪种图案.解决方法一般是将所给图案按逆顺序复原,看是否能得到折叠后的图案,另一种方法是折叠、观察、想象,最好的办法是动手按题目要求折叠、裁剪、展开观察.析规律利用轴对称性质解决折叠问题解决这类问题的关键是,折叠前后重合的部分全等,即折叠前和折叠后盖上的部分重合,所以对应角、对应线段相等.【例10-1】如图,把一个长方形沿EF折叠后,点D、C分别落在D1、C1的位置.若∠EFB=65°,则∠AED1=__________度.解析:因为AD∥BC,所以∠DEF=∠EFB=65°.又因为折叠前后重合的部分全等,所以∠AED1=∠DEF=65°.所以∠DED1=130°.所以∠AED1=180°-∠DED1=50°.答案:50【例10-2】如下图所示,把一个正方形纸片对折两次后沿虚线剪下,展开后所得的图形是().解析:解题关键是明确两条折痕都是对称轴,故本题可借助空间想象,将两次对折后的图形沿两条折痕展开,易知展开后的图形应是B.注意折叠方向和剪去的角度.答案:B专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠ABC和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3B.2C.D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1B.-1C.5D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.状元笔记【知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.参考答案1.D解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:

4.A解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B点、C点关于DE对称,有∠DBE=∠BCD,∠ABC=2∠BCD.且已知∠A=90°,故∠ABC+∠BCD=90°.故∠ABC=60°,∠C=30°.6.解:(1)对称点有A和A',B和B',C和C'.(2)连接A、A′,直线m是线段AA′的垂直平分线.(3)延长线段AC与A′C′,它们的交点在直线m上,其他对应线段(或其延长线)的交点也在直线m上,即若两线段关于直线m对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B解析:在Rt△FDB中,∵∠F=30°,∴∠B=60°.在Rt△ABC中,∵∠ACB=90°,∠ABC=60°,∴∠A=30°.在Rt△AED中,∵∠A=30°,DE=1,∴AE=2.连接EB.∵DE是AB的垂直平分线,∴EB=AE=2.∴∠EBD=∠A=30°.∵∠ABC=60°,∴∠EBC=30°.∵∠F=30°,∴EF=EB=2.故选B.8.8解析:∵DF是AB的垂直平分线,∴DB=DA.∵EG是AC的垂直平分线,∴EC=EA.∵BC=8,∴△ADE的周长=DA+EA+DE=DB+DE+EC=BC=8.9.解:AB+BD=DE.证明:∵AD⊥BC,BD=DC,∴AB=AC.∵点C在AE的垂直平分线上,∴AC=CE.∴AB=CE.∴AB+BD=CE+DC=DE.10.C解析:关于y轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5.解得1.5<a<2.5,又因为a必须为整数,∴a=2.∴点P2(-1,-1).∴P1点的坐标是(-1,1).13.1.1轴对称一、选择题(共8小题)1.下列各图,不是轴对称图形的是()A.B.C.D.2.下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是()A.上海自来水来自海上B.有志者事竞成C.清水池里池水清D.蜜蜂酿蜂蜜3.下列说法错误的是()A.等边三角形有3条对称轴B.正方形有4条对称轴C.角的对称轴有2条D.圆有无数条对称轴4.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变5.观察图形…并判断照此规律从左到右第四个图形是()A.B.C.D.6.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行第5题图第6题图第7题图7.如图,两个三角形关于某条直线成轴对称,其中已知某些边的长度和某些角的度数,则x的度数是()A.55°B.60°C.65°D.70°8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A.B.C.D.二、填空题(共10小题)9.2011年11月2日,即20111102,正好前后对称,因而被称为“完美对称日”,请你写出本世纪的一个“完美对称日”:_________.10.写出一个至少具有2条对称轴的图形名称

_________.11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是_________(填出所有符合要求的小正方形的标号)12.在轴对称图形中,对应点的连线段被

_________垂直平分.13.下列图形中,一定是轴对称图形的有_________;(填序号)(1)线段(2)三角形(3)圆(4)正方形(5)梯形.14.如图是汽车牌照在水中的倒影,则该车牌照上的数字是_________.15.(2009•綦江县)请同学们写出两个具有轴对称性的汉字_________.16.如图,国际奥委会会旗上的图案由5个圆环组成.每两个圆环相交的部分叫做曲边四边形,如图所示,从左至右共有8个曲边四边形,分别给它们标上序号.观察图形,我们发现标号为2的曲边四边形(下简称“2”)经过平移能与“6”重合,2又与_________成轴对称.(请把能成轴对称的曲边四边形标号都填上)第11题图第14题图第16题图17.如图,长方形ABCD中,长BC=a,宽AB=b,(b<a<2b),四边形ABEH和四边形ECGF都是正方形.当a、b满足的等量关系是_________时,图形是一个轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论