版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省秦皇岛市2025届高三考前热身数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A. B.(1,2), C. D.2.设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为()A. B. C.5 D.63.已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是()A. B. C. D.4.已知集合,则()A. B. C. D.5.在复平面内,复数(为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为()A. B. C. D.7.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. B. C.或- D.和-8.已知复数满足,则()A. B. C. D.9.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为()A. B.C. D.10.已知集合的所有三个元素的子集记为.记为集合中的最大元素,则()A. B. C. D.11.设复数满足,则在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知集合,集合,那么等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则的值为____14.已知函数,则曲线在处的切线斜率为________.15.若变量,满足约束条件则的最大值是______.16.已知向量,,满足,,,则的取值范围为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数的最小正周期以及单调递增区间;(2)已知,若,,,求的面积.18.(12分)2019年安庆市在大力推进城市环境、人文精神建设的过程中,居民生活垃圾分类逐渐形成意识.有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识"的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图:(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布,近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P();(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:(i)得分不低于可获赠2次随机话费,得分低于则只有1次:(ii)每次赠送的随机话费和对应概率如下:赠送话费(单位:元)1020概率现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.附:,若,则,.19.(12分)已知△ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面积.20.(12分)在△ABC中,分别为三个内角A、B、C的对边,且(1)求角A;(2)若且求△ABC的面积.21.(12分)已知是递增的等比数列,,且、、成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求数列的前项和.22.(10分)已知正实数满足.(1)求的最小值.(2)证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,,离心率,,故选:.【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.2、A【解析】
根据双曲线的标准方程求出右顶点、右焦点的坐标,再求出过点与的一条渐近线的平行的直线方程,通过解方程组求出点的坐标,最后利用三角形的面积公式进行求解即可.【详解】由双曲线的标准方程可知中:,因此右顶点的坐标为,右焦点的坐标为,双曲线的渐近线方程为:,根据双曲线和渐近线的对称性不妨设点作平行的一条渐近线的直线与交于点,所以直线的斜率为,因此直线方程为:,因此点的坐标是方程组:的解,解得方程组的解为:,即,所以的面积为:.故选:A【点睛】本题考查了双曲线的渐近线方程的应用,考查了两直线平行的性质,考查了数学运算能力.3、C【解析】
在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.【详解】∵直线是曲线的一条对称轴.,又..∴平移后曲线为.曲线的一个对称中心为..,注意到故的最小值为.故选:C.【点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.4、C【解析】
解不等式得出集合A,根据交集的定义写出A∩B.【详解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故选C.【点睛】本题考查了解不等式与交集的运算问题,是基础题.5、D【解析】
将复数化简得,,即可得到对应的点为,即可得出结果.【详解】,对应的点位于第四象限.故选:.【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.6、C【解析】
利用建系,假设长度,表示向量与,利用向量的夹角公式,可得结果.【详解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作轴//,建立空间直角坐标系如图设,所以则所以所以故选:C【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.7、C【解析】
直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.【详解】如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴由对称性可知k=±.故选C.【点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.8、A【解析】
根据复数的运算法则,可得,然后利用复数模的概念,可得结果.【详解】由题可知:由,所以所以故选:A【点睛】本题主要考查复数的运算,考验计算,属基础题.9、B【解析】
由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.10、B【解析】
分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.【详解】集合含有个元素的子集共有,所以.在集合中:最大元素为的集合有个;最大元素为的集合有;最大元素为的集合有;最大元素为的集合有;所以.故选:.【点睛】此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.11、C【解析】
化简得到,得到答案.【详解】,故,对应点在第三象限.故选:.【点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.12、A【解析】
求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】
根据的正负值,代入对应的函数解析式求解即可.【详解】解:.故答案为:.【点睛】本题考查分段函数函数值的求解,是基础题.14、【解析】
求导后代入可构造方程求得,即为所求斜率.【详解】,,解得:,即在处的切线斜率为.故答案为:.【点睛】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.15、9【解析】
做出满足条件的可行域,根据图形,即可求出的最大值.【详解】做出不等式组表示的可行域,如图阴影部分所示,目标函数过点时取得最大值,联立,解得,即,所以最大值为9.故答案为:9.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.16、【解析】
设,,,,由,,,根据平面向量模的几何意义,可得A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,为的距离,利用数形结合求解.【详解】设,,,,如图所示:因为,,,所以A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,则即的距离,由图可知,.故答案为:【点睛】本题主要考查平面向量的模及运算的几何意义,还考查了数形结合的方法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为,单调递增区间为;(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可求得该函数的单调递增区间;(2)由求得,由得出或,分两种情况讨论,结合余弦定理解三角形,进行利用三角形的面积公式可求得的面积.【详解】(1),所以,函数的最小正周期为,由得,因此,函数的单调递增区间为;(2)由,得,或,或,,,又,,即.①当时,即,则由,,得,则,此时,的面积为;②当时,则,即,则由,解得,,.综上,的面积为.【点睛】本题考查正弦型函数的周期和单调区间的求解,同时也考查了三角形面积的计算,涉及余弦定理解三角形的应用,考查计算能力,属于中等题.18、(1)(2)详见解析【解析】
(1)利用频率分布直方图平均数等于小矩形的面积乘以底边中点横坐标之和,再利用正态分布的对称性进行求解.(2)写出随机变量的所有可能取值,利用互斥事件和相互独立事件同时发生的概率计算公式,再列表得到其分布列.【详解】解:(1)从这1000人问卷调查得到的平均值为∵由于得分Z服从正态分布,(2)设得分不低于分的概率为p,(或由频率分布直方图知)法一:X的取值为10,20,30,40;;;;所以X的分布列为X10203040P法二:2次随机赠送的话费及对应概率如下2次话费总和203040PX的取值为10,20,30,40;;;;所以X的分布列为X10203040P【点睛】本题考查了正态分布、离散型随机变量的分布列,属于基础题.19、(1);(2)或.【解析】
(1)利用正弦定理对已知代数式化简,根据余弦定理求解余弦值;(2)根据余弦定理求出b=1或b=3,结合面积公式求解.【详解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化简得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C为三角形内角,∴sinC,∴S△ABCabsinC3×bb,则△ABC的面积为或.【点睛】此题考查利用正余弦定理求解三角形,关键在于熟练掌握正弦定理进行边角互化,利用余弦定理求解边长,根据面积公式求解面积.20、(1);(2).【解析】
(1)整理得:,再由余弦定理可得,问题得解.(2)由正弦定理得:,,,再代入即可得解.【详解】(1)由题意,得,∴;(2)由正弦定理,得,,∴.【点睛】本题主要考查了正、余弦定理及三角形面积公式,考查了转化思想及化简能力,属于基础题.21、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)设等比数列的公比为,根据题中条件求出的值,结合等比数列的通项公式可得出数列的通项公式;(Ⅱ)求得,然后利用裂项相消
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度家庭保姆雇佣与技能提升服务合同4篇
- 2025年度门窗安装与室外照明一体化工程合同范本3篇
- 2025年度个人精装修房屋租赁合同示范文本2篇
- 2025年度茶馆店铺转让及文化传承合同3篇
- 2025版宁波共有产权房租赁合同模板4篇
- 2025年度车辆购置担保合同模板2篇
- 二零二五年度充电桩充电服务市场分析合同4篇
- 2025版木地板产业链整合与战略投资合同4篇
- 2025年度酒店楼顶花园租赁与维护合同3篇
- 年薪制劳动合同范本2025:新能源汽车行业人才激励方案3篇
- 幼儿园学习使用人民币教案教案
- 2023年浙江省绍兴市中考科学真题(解析版)
- 语言学概论全套教学课件
- 大数据与人工智能概论
- 《史记》上册注音版
- 2018年湖北省武汉市中考数学试卷含解析
- 测绘工程产品价格表汇编
- 《肾脏的结构和功能》课件
- 装饰图案设计-装饰图案的形式课件
- 护理学基础教案导尿术catheterization
- ICU护理工作流程
评论
0/150
提交评论