2020-2021大连理工大学附属中学高中必修二数学下期中第一次模拟试卷(带答案)_第1页
2020-2021大连理工大学附属中学高中必修二数学下期中第一次模拟试卷(带答案)_第2页
2020-2021大连理工大学附属中学高中必修二数学下期中第一次模拟试卷(带答案)_第3页
2020-2021大连理工大学附属中学高中必修二数学下期中第一次模拟试卷(带答案)_第4页
2020-2021大连理工大学附属中学高中必修二数学下期中第一次模拟试卷(带答案)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020-2021大连理工大学附属中学高中必修二数学下期中第一次模拟试卷(带答案)一、选择题1.水平放置的的斜二测直观图如图所示,若,的面积为,则的长为()A. B. C.2 D.82.已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且,则此棱锥的体积为()A. B. C. D.3.如图为某几何体的三视图,则该几何体的表面积为()A. B.C. D.4.对于平面、、和直线、、、,下列命题中真命题是()A.若,则B.若,则C.若则D.若,则5.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积为()A. B. C. D.6.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A. B. C. D.7.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A. B.C. D.8.在长方体中,,点在线段上运动,当异面直线与所成的角最大时,则三棱锥的体积为()A. B. C. D.9.已知直三棱柱的所有棱长都相等,为的中点,则与所成角的余弦值为()A. B. C. D.10.如图,在正方体中,,分别是,的中点,则下列说法错误的是()A.与垂直 B.与垂直C.与平行 D.与平行11.若圆的参数方程为(为参数),直线的参数方程为(t为参数),则直线与圆的位置关系是()A.相交且过圆心 B.相交但不过圆心 C.相切 D.相离12.已知平面且,是平面内一点,,是异于且不重合的两条直线,则下列说法中错误的是().A.若且,则 B.若且,则C.若且,则 D.若且,则二、填空题13.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1,球O的体积为V2,则的值是_____14.过点且与直线垂直的直线方程为____________.15.在平面直角坐标系中,设将椭圆绕它的左焦点旋转一周所覆盖的区域为,为区域内的任一点,射线上的点为,若的最小值为,则实数的取值为_____.16.若圆:与圆:关于直线对称,则______.17.已知为直线,为空间的两个平面,给出下列命题:①;②;③;④.其中的正确命题为_________________.18.圆上的点到直线的距离的最小值是.19.底面边长为2的正三棱柱被不平行于底面的平面所截,其中,,,则多面体体积为________20.如图,已知圆锥的高是底面半径的倍,侧面积为,若正方形内接于底面圆,则四棱锥侧面积为__________.三、解答题21.已知的三个顶点、、.(1)求边所在直线的方程;(2)边上中线的方程为,且,求点的坐标.22.如图,已知三棱锥中,,,为的中点,为的中点,且为正三角形.(1)求证:平面;(2)求证:平面;(3)若,,求三棱锥的体积.23.已知圆(1)若,过点作圆的切线,求该切线的方程;(2)当圆与圆相外切时,从点射出一道光线,经过轴反射,照到圆上的一点,求光线从点经反射后走到点所走过路线的最小值.24.如图,三棱柱中,平面平面,平面平面,,点、分别为棱、的中点,过点、的平面交棱于点,使得∥平面.(1)求证:平面;(2)若四棱锥的体积为,求的正弦值.25.若圆的方程为,△中,已知,,点为圆上的动点.(1)求中点的轨迹方程;(2)求△面积的最小值.26.如图,在梯形中,,,,四边形为矩形,平面平面,.(1)证明:平面;(2)设点在线段上运动,平面与平面所成锐二面角为,求的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】依题意由的面积为,解得,所以,,根据勾股定理即可求.【详解】依题意,因为的面积为,所以,解得,所以,,又因为,由勾股定理得:.故选B.【点睛】本题考查直观图还原几何图形,属于简单题.利用斜二测画法作直观图,主要注意两点:一是与x轴平行的线段仍然与轴平行且相等;二是与y轴平行的线段仍然与轴平行且长度减半.2.A解析:A【解析】【分析】【详解】根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1=,∴,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴.考点:棱锥与外接球,体积.【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.3.B解析:B【解析】该几何体是一个正方体与半圆柱的组合体,表面积为,故选B.4.C解析:C【解析】【分析】【详解】若由线面垂直的判定定理知,只有当和为相交线时,才有

错误;若此时由线面平行的判定定理可知,只有当在平面

外时,才有错误;由面面平行的性质定理:若两平面平行,第三个平面与他们都相交,则交线平行,可判断,若,,,则为真命题,正确;若此时由面面平行的判定定理可知,只有当、为相交线时,才有错误.故选C.考点:考查直线与直线,直线与平面,平面与平面的位置关系.5.C解析:C【解析】【分析】由三视图知几何体是一个侧棱与底面垂直的三棱锥,底面是斜边上的高为的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为,高为,故三棱锥的外接球与以棱长为的正方体的外接球相同,由此可得结论【详解】由三视图知几何体是一个侧棱与底面垂直的三棱锥,底面是斜边上的高为的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为,高为,故三棱锥的外接球与以棱长为的正方体的外接球相同,其直径为,半径为三棱锥的外接球体积为故选【点睛】本题主要考查了三视图,几何体的外接球的体积,考查了空间想象能力,计算能力,属于中档题.6.B解析:B【解析】【分析】【详解】试题分析:.由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).考点:1.三视图读图的能力;2.几何体的体积公式.7.A解析:A【解析】【分析】利用线面平行判定定理可知B、C、D均不满足题意,从而可得答案.【详解】对于B项,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ,同理可证,C,D项中均有AB∥平面MNQ.故选:A.【点睛】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,属于中档题.8.B解析:B【解析】【分析】当P与A重合时,异面直线CP与BA1所成的角最大,由此能求出当异面直线CP与BA1所成的角最大时,三棱锥C﹣PA1D1的体积.【详解】如图,当P与A重合时,异面直线CP与BA1所成的角最大,∴当异面直线CP与BA1所成的角最大时,三棱锥C﹣PA1D1的体积:=====.故选:B.【点睛】求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法.①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.9.D解析:D【解析】【分析】取的中点,连接,则,所以异面直线与所成角就是直线与所成角,在中,利用余弦定理,即可求解.【详解】由题意,取的中点,连接,则,所以异面直线与所成角就是直线与所成角,设正三棱柱的各棱长为,则,设直线与所成角为,在中,由余弦定理可得,即异面直线与所成角的余弦值为,故选D.【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.10.D解析:D【解析】【分析】先利用三角形中位线定理证明,再利用线面垂直的判定定理定义证明与垂直,由异面直线所成的角的定义证明与垂直,即可得出结论.【详解】如图:连接,,在三角形中,,故C正确.平面,,与垂直,故A正确;,,与垂直,B正确;∵,与不可能平行,D错误故选:D.【点睛】本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键.11.B解析:B【解析】【分析】根据题意,将圆和直线的参数方程变形为普通方程,分析可得圆心不在直线上,再利用点到直线的距离公式计算可得圆心到直线的距离,得到直线与圆的位置关系为相交.【详解】根据题意,圆的参数方程为(为参数),则圆的普通方程为,其圆心坐标为,半径为2.直线的方程为(为参数),则直线的普通方程为,即,圆心不在直线上.∴圆心到直线的距离为,即直线与圆相交.故选A.【点睛】本题考查直线、圆的参数方程,涉及直线与圆的位置关系,解答本题的关键是将直线与圆的参数方程变形为普通方程.12.D解析:D【解析】【分析】根据已知条件和线面位置关系一一进行判断即可.【详解】选项A:一条直线平行于两个相交平面,必平行于两个面交线,故A正确;选项B:垂直于两垂直面的两条直线相互垂直,故B正确;选项C:且得且,故C正确;选项D:且不一定得到,所以可以异面,不一定得到.故选:D.【点睛】本题主要考查的是空间点、线、面的位置关系的判定,掌握线面、线线之间的判定定理和性质定理是解决本题的关键,是基础题.二、填空题13.【解析】设球半径为则故答案为点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体锥体或台体则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出则常解析:【解析】设球半径为,则.故答案为.点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.14.【解析】【分析】因为直线l与已知直线垂直根据两直线垂直时斜率的乘积为-1由已知直线的斜率求出直线l的斜率然后根据(-12)和求出的斜率写出直线l的方程即可【详解】因为直线2x-3y+9=0的斜率为所解析:【解析】【分析】因为直线l与已知直线垂直,根据两直线垂直时斜率的乘积为-1,由已知直线的斜率求出直线l的斜率,然后根据(-1,2)和求出的斜率写出直线l的方程即可.【详解】因为直线2x-3y+9=0的斜率为,所以直线l的斜率为,则直线l的方程为:,化简得.即答案为.【点睛】本题考查学生掌握两直线垂直时斜率的关系,会根据一点和斜率写出直线的点斜式方程,是一道基础题.15.【解析】【分析】先确定轨迹再根据射线上点与圆的位置关系求最值即得结果【详解】所以为以为圆心为半径的圆及其内部设射线的端点为所以的最小值为故答案为:【点睛】本题考查动点轨迹以及点与圆位置关系考查数形结解析:【解析】【分析】先确定轨迹,再根据射线上点与圆的位置关系求最值,即得结果.【详解】,所以为以为圆心,为半径的圆及其内部,设射线的端点为,所以的最小值为.故答案为:.【点睛】本题考查动点轨迹以及点与圆位置关系,考查数形结合思想以及基本分析求解能力,属中档题.16.【解析】【分析】两圆关于直线对称即圆心关于直线对称则两圆的圆心的连线与直线垂直且中点在直线上圆的半径也为即可求出参数的值【详解】解:因为圆:即圆心半径由题意得与关于直线对称则解得圆的半径解得故答案为解析:【解析】【分析】两圆关于直线对称即圆心关于直线对称,则两圆的圆心的连线与直线垂直且中点在直线上,圆的半径也为,即可求出参数的值.【详解】解:因为圆:,即,圆心,半径,由题意,得与关于直线对称,则解得,,圆的半径,解得.故答案为:【点睛】本题考查圆关于直线对称求参数的值,属于中档题.17.③④【解析】关于①也会有的结论因此不正确;关于②也会有异面的可能的结论因此不正确;容易验证关于③④都是正确的故应填答案③④解析:③④【解析】关于①,也会有的结论,因此不正确;关于②,也会有异面的可能的结论,因此不正确;容易验证关于③④都是正确的,故应填答案③④.18.4【解析】试题分析:圆的圆心为圆心到直线的距离为所以点到直线的距离的最小值是5-1=4考点:直线和圆的位置关系解析:4【解析】试题分析:圆的圆心为,圆心到直线的距离为,所以点到直线的距离的最小值是5-1=4考点:直线和圆的位置关系19.【解析】【分析】将多面体分为四棱锥与三棱锥两部分相加求和即可【详解】如图将多面体分为四棱锥与三棱锥两部分其中四棱锥的高为为梯形则故多面体体积为故答案为:【点睛】本题主要考查了多面体体积的求解方法根据解析:【解析】【分析】将多面体分为四棱锥与三棱锥两部分相加求和即可.【详解】如图,将多面体分为四棱锥与三棱锥两部分.其中四棱锥的高为.为梯形.则..故多面体体积为故答案为:【点睛】本题主要考查了多面体体积的求解方法,根据多面体的特征分为两个棱锥计算即可.属于中档题.20.【解析】分析:设圆锥底面半径为则高为母线长为由圆锥侧面积为可得结合利用三角形面积公式可得结果详解:设圆锥底面半径为则高为母线长为因为圆锥侧面积为设正方形边长为则正四棱锥的斜高为正四棱锥的侧面积为故答解析:.【解析】分析:设圆锥底面半径为,则高为,母线长为,由圆锥侧面积为,可得,结合,利用三角形面积公式可得结果.详解:设圆锥底面半径为,则高为,母线长为,因为圆锥侧面积为,,,设正方形边长为,则,正四棱锥的斜高为,正四棱锥的侧面积为,故答案为.点睛:本题主要考查圆锥的性质、正四棱锥的性质,以及圆锥的侧面积、正四棱锥的侧面积,属于中档题,解答本题的关键是求得正四棱锥底面棱长与圆锥底面半径之间的关系.三、解答题21.(1);(2)点坐标为、【解析】【分析】(1)利用两点式求得边所在直线方程;(2)利用点到直线的距离公式求得到直线的距离,根据面积以及点在直线上列方程组,解方程组求得点的坐标.【详解】(1)由、得边所在直线方程为,即.(2),到边所在直线的距离为,由于在直线上,故,即,解得或.【点睛】本小题主要考查利用两点式求直线方程,考查点到直线的距离公式,考查三角形面积公式,属于基础题.22.(1)见详解;(2)见详解;(3).【解析】【分析】(1)先证,可证平面.(2)先证,得,结合可证得平面.(3)等积转换,由,可求得体积.【详解】(1)证明:因为为的中点,为的中点,所以是的中位线,.又,,所以.(2)证明:因为为正三角形,为的中点,所以.又,所以.又因为,,所以.因为,所以.又因为,,所以.(3)因为,,所以,即是三棱锥的高.因为,为的中点,为正三角形,所以.由,可得,在直角三角形中,由,可得.于是.所以.【点睛】本题考查空间线面平行与垂直的证明,体积的计算.空间中的平行与垂直的证明过程就是利用相关定义、判定定理和性质定理实现线线平行(垂直)、线面平行(垂直)、面面平行(垂直)的转换.求三棱锥的体积常采用等积转换的方法,选择易求的底面积和高来求体积.23.(1)或;(2).【解析】【分析】(1)把代入圆的方程中,可得圆心坐标和半径,当直线斜率不存在时,可得,此时和圆相切符合题意;当直线斜率存在时,由点斜式设出直线方程,由圆心到直线的距离等于半径可得,进而可求出,则切线方程可求.(2)由两圆外切可知圆心距为半径之和,即可求出的值,从而可得,求出点关于轴对称的点为,求出的值,即可求出所求路线的最小值.【详解】解:(1)当时,圆,即,当切线斜率不存在时,直线,点到直线l距离为3,等于半径,符合题意.当切线斜率存在时,设直线,即,由题意点到直线l距离等于半径,即,解得.,整理得.综上:切线方程为或.(2)圆,则圆心为,半径.圆,则圆心,半径.圆M和圆N相外切,即,.此时圆,圆心,半径.由点关于轴对称的点为,,所走路线的最小值为.【点睛】本题考查了直线与圆位置关系的应用,考查了圆圆的位置关系的应用.由直线和圆相切可得等量关系为,圆心到直线的距离等于半径;由圆圆外切可得等量关系为,圆心距为两圆的半径之和.本题的易错点是,在求第一问的切线方程时,没讨论直线斜率不存在的情况.24.(1)见解析;(2).【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论