2025届甘肃省兰州市市区片高考数学五模试卷含解析_第1页
2025届甘肃省兰州市市区片高考数学五模试卷含解析_第2页
2025届甘肃省兰州市市区片高考数学五模试卷含解析_第3页
2025届甘肃省兰州市市区片高考数学五模试卷含解析_第4页
2025届甘肃省兰州市市区片高考数学五模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省兰州市市区片高考数学五模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则()A. B. C. D.2.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分不必要条件3.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A. B. C. D.4.已知向量与向量平行,,且,则()A. B.C. D.5.已知且,函数,若,则()A.2 B. C. D.6.函数与的图象上存在关于直线对称的点,则的取值范围是()A. B. C. D.7.已知关于的方程在区间上有两个根,,且,则实数的取值范围是()A. B. C. D.8.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.9.如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是()A.该年第一季度GDP增速由高到低排位第3的是山东省B.与去年同期相比,该年第一季度的GDP总量实现了增长C.该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个D.去年同期浙江省的GDP总量超过了4500亿元10.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为()A.正相关,相关系数的值为B.负相关,相关系数的值为C.负相关,相关系数的值为D.正相关,相关负数的值为11.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是()A. B. C. D.12.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是()A.甲班的数学成绩平均分的平均水平高于乙班B.甲班的数学成绩的平均分比乙班稳定C.甲班的数学成绩平均分的中位数高于乙班D.甲、乙两班这5次数学测试的总平均分是103二、填空题:本题共4小题,每小题5分,共20分。13.设、满足约束条件,若的最小值是,则的值为__________.14.已知函数,若方程的解为,(),则_______;_______.15.过直线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最小面积的概率为________.16.已知椭圆的左右焦点分别为,过且斜率为的直线交椭圆于,若三角形的面积等于,则该椭圆的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分别是棱AA1,AC和A1C1的中点,以为正交基底,建立如图所示的空间直角坐标系F-xyz.(1)求异面直线AC与BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.18.(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.参考公式:,,,.19.(12分)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女1055合计(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63520.(12分)设等比数列的前项和为,若(Ⅰ)求数列的通项公式;(Ⅱ)在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.21.(12分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且.(1)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值.22.(10分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项.(1)证明:数列是等差数列;(2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,,,,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题2、A【解析】

试题分析:α⊥β,b⊥m又直线a在平面α内,所以a⊥b,但直线不一定相交,所以“α⊥β”是“a⊥b”的充分不必要条件,故选A.考点:充分条件、必要条件.3、B【解析】

利用换元法化简解析式为二次函数的形式,根据二次函数的性质求得的取值范围,由此求得的值域.【详解】因为(),所以,令(),则(),函数的对称轴方程为,所以,,所以,所以的值域为.故选:B【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.4、B【解析】

设,根据题意得出关于、的方程组,解出这两个未知数的值,即可得出向量的坐标.【详解】设,且,,由得,即,①,由,②,所以,解得,因此,.故选:B.【点睛】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.5、C【解析】

根据分段函数的解析式,知当时,且,由于,则,即可求出.【详解】由题意知:当时,且由于,则可知:,则,∴,则,则.即.故选:C.【点睛】本题考查分段函数的应用,由分段函数解析式求自变量.6、C【解析】

由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件.故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题.7、C【解析】

先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【详解】由题化简得,,作出的图象,又由易知.故选:C.【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.8、A【解析】

阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.9、D【解析】

根据折线图、柱形图的性质,对选项逐一判断即可.【详解】由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的省份有江苏均第一.河南均第四.共2个.故C项正确;.故D项不正确.故选:D.【点睛】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.10、C【解析】

根据正负相关的概念判断.【详解】由散点图知随着的增大而减小,因此是负相关.相关系数为负.故选:C.【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.11、C【解析】

利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.【详解】设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.故选:C【点睛】本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题.12、D【解析】

计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案.【详解】由题意可得甲班的平均分是104,中位数是103,方差是26.4;乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确.因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误.故选:.【点睛】本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

画出满足条件的平面区域,求出交点的坐标,由得,显然直线过时,最小,代入求出的值即可.【详解】作出不等式组所表示的可行域如下图所示:联立,解得,则点.由得,显然当直线过时,该直线轴上的截距最小,此时最小,,解得.故答案为:.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.14、【解析】

求出在上的对称轴,依据对称性可得的值;由可得,依据可求出的值.【详解】解:令,解得因为,所以关于对称.则.由,则由可知,,又因为,所以,则,即故答案为:;.【点睛】本题考查了三角函数的对称轴,考查了诱导公式,考查了同角三角函数的基本关系.本题的易错点在于没有正确判断的取值范围,导致求出.在求的对称轴时,常用整体代入法,即令进行求解.15、.【解析】

先求圆的半径,四边形的最小面积,转化为的最小值为,求出切线长的最小值,再求的距离也就是圆心到直线的距离,可解得的取值范围,利用几何概型即可求得概率.【详解】由圆的方程得,所以圆心为,半径为,四边形的面积,若四边形的最小面积,所以的最小值为,而,即的最小值,此时最小为圆心到直线的距离,此时,因为,所以,所以的概率为.【点睛】本题考查直线与圆的位置关系,及与长度有关的几何概型,考查了学生分析问题的能力,难度一般.16、【解析】

由题得直线的方程为,代入椭圆方程得:,设点,则有,由,且解出,进而求解出离心率.【详解】由题知,直线的方程为,代入消得:,设点,则有,,而,又,解得:,所以离心率.故答案为:【点睛】本题主要考查了直线与椭圆的位置关系,三角形面积计算与离心率的求解,考查了学生的运算求解能力三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】

(1)先根据空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2)分别求得平面BFC1的一个法向量和平面BCC1的一个法向量,再利用面面角的向量方法求解.【详解】规范解答(1)因为AB=1,AA1=2,则F(0,0,0),A,C,B,E,所以=(-1,0,0),=记异面直线AC和BE所成角为α,则cosα=|cos〈〉|==,所以异面直线AC和BE所成角的余弦值为.(2)设平面BFC1的法向量为=(x1,y1,z1).因为=,=,则取x1=4,得平面BFC1的一个法向量为=(4,0,1).设平面BCC1的法向量为=(x2,y2,z2).因为=,=(0,0,2),则取x2=得平面BCC1的一个法向量为=(,-1,0),所以cos〈〉==根据图形可知二面角F-BC1-C为锐二面角,所以二面角F-BC1-C的余弦值为.【点睛】本题主要考查了空间向量法研究空间中线线角,面面角的求法,还考查了转化化归的思想和运算求解的能力,属于中档题.18、(1);(2)见解析【解析】试题分析:(I)由题意可得,,则,,关于的线性回归方程为.(II)由题意可知二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,.据此可得分布列,计算相应的数学期望为元.试题解析:(I)依题意:,,,,,,则关于的线性回归方程为.(II)二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,,.所以,总金额的分布列如下表:03006009001200总金额的数学期望为元.19、(1)无关;(2),.【解析】

(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而可得列联表如下:非体育迷体育迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得.因为3.030<3.841,所以我们没有充分理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率.由题意知X~B(3,),从而X的分布列为X0123PE(X)=np==.D(X)=np(1-p)=20、(Ⅰ);(Ⅱ)详见解析.【解析】

(Ⅰ),,两式相减化简整理利用等比数列的通项公式即可得出.(Ⅱ)由题设可得,可得,利用错位相减法即可得出.【详解】解:(Ⅰ)因为,故,两式相减可得,,故,因为是等比数列,∴,又,所以,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论