版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试题PAGE1试题福田区华富中学2023-2024学年第一学期九年级10月月考数学试卷一.选择题(每题3分,共30分)1.用配方法解方程x2﹣6x+5=0,配方后可得()A.(x+3)2=4 B.(x﹣3)2=4 C.(x﹣3)2=14 D.(x﹣3)2=92.如图,矩形ABCD的对角线AC、BD相交于点O,点E是CD的中点,若OE=3,则BC的长为()A.3 B.4 C.5 D.63.下列说法正确的是()A.四边相等的四边形是正方形 B.对角线互相垂直且相等的四边形是正方形C.对角线互相垂直平分的四边形是菱形 D.对角线相等的四边形是矩形4.如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A、B的坐标分别为(0,2)、(﹣1,0),则点D的坐标为()A.(,2) B.(2,) C.(,2) D.(2,)5.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AD的长为()A.4 B.5 C.3 D.46.如图,在菱形ABCD中,∠ABC=70°,对角线AC、BD相交于点O,E为BC中点,则∠COE的度数为()A.70° B.65° C.55° D.35°7.在一个不透明的袋子里装有5个红球和若干个白球,它们除颜色外其余完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计袋中的白球大约有()个A.25 B.20 C.15 D.108.用图中两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色,即可配成紫色(若指针指在分界线上,则重转),则配成紫色的概率为()A. B. C. D.9.某超市1月份营业额为100万元,2月、3月的营业额共400万元,如果平均每月营业额的增长率为x,则由题意可列方程()A.100(1+x)2=400 B.100(1+x)(1+2x)=400 C.100(1+x)(2+x)=400 D.100[1+(1+x)+(1+x)2]=40010.如图,正方形ABCD中,AB=12,点E在边CD上,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,且BG=CG,连接AG、CF.下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个二.填空题(每题3分,共15分)11.方程x(x+2)=(x+2)的根为.12.若x=2是方程x2+3x﹣2m=0的一个根,则m的值为.13.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=24,BD=10,DE⊥BC,垂足为点E,则DE=.14.若一元二次方程mx2+4x+5=0有两个不相等实数根,则m的取值范围.15.已知α、β是方程x2+x﹣2=0的两个实数根,则代数式2α2+3α+β的值是.三.解答题(共55分)16.(12分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0; (2)2x2﹣4x﹣7=0;(3)x2+x﹣1=0; (4)(2x﹣1)2﹣x2=0.17.(7分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.18.(7分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?19.(6分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.20.(7分)如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF∥AE.(1)求证:四边形BECF是菱形;(2)当∠A=°时,四边形BECF是正方形;(3)在(2)的条件下,若AC=4,则四边形ABFC的面积为.21.(8分)如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,动点D从点A出发以4cm/s速度向点C移动,同时动点E从C出发以3cm/s的速度向点B移动,设它们的运动时间为ts.(1)根据题意知:CE=,CD=;(用含t的代数式表示)(2)t为何值时,△CDE的面积等于四边形ABED的面积的?(3)点D、E运动时,DE的长可以是4cm吗?如果可以,请求出t的值,如果不可以,请说明理由.22.(8分)小明学习了平行四边形这一章后,对特殊四边形的探究产生了兴趣,发现另外一类特殊四边形,如图1,我们把两条对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:在平行四边形、矩形、菱形、正方形中,一定是垂美四边形的是(2)性质探究:通过探究,直接写出垂直四边形ABCD的面积S与两对角线AC,BD之间的数量关系:.(3)问题解决:如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CG,BE,GE,已知AC=4,AB=5.①求证:四边形BCGE为垂美四边形;②求出四边形BCGE的面积.
华富中学10月月考参考答案与试题解析一.选择题(共10小题)1.用配方法解方程x2﹣6x+5=0,配方后可得()A.(x+3)2=4 B.(x﹣3)2=4 C.(x﹣3)2=14 D.(x﹣3)2=9【解答】解:x2﹣6x+5=0,x2﹣6x=﹣5,x2﹣6x+9=4,(x﹣3)2=4.故选:B.2.如图,矩形ABCD的对角线AC、BD相交于点O,点E是CD的中点,若OE=3,则BC的长为()A.3 B.4 C.5 D.6【解答】解:∵四边形ABCD为矩形,∴DO=BO,∵点E是CD的中点,OE=3,∴BC=2OE=6,故选:D.3.下列说法正确的是()A.四边相等的四边形是正方形 B.对角线互相垂直且相等的四边形是正方形 C.对角线互相垂直平分的四边形是菱形 D.对角线相等的四边形是矩形【解答】解:A、四边相等的四边形是菱形,说法错误,不符合题意;B、对角线平分互相垂直且相等的四边形是正方形,说法错误,不符合题意;C、对角线互相垂直平分的四边形是菱形,说法正确,符合题意;D、对角线平分且相等的四边形是矩形,说法错误,不符合题意;故选:C.4.如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A、B的坐标分别为(0,2)、(﹣1,0),则点D的坐标为()A.(,2) B.(2,) C.(,2) D.(2,)【解答】解:∵点A、B的坐标分别为(0,2)、(﹣1,0),∴OB=1,AO=2,∴AB==,∵四边形ABCD是菱形,∴AD=AB=,AD∥BC,∴点D坐标为(,2),故选A.5.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AD的长为()A.4 B.5 C.3 D.4【解答】解:∵四边形ABCD是矩形,BD=8,∴AC=BD=8,∠ABC=90°,∴OA=OB=4,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=OA=4,∴AD==4,故选:D.6.如图,在菱形ABCD中,∠ABC=70°,对角线AC、BD相交于点O,E为BC中点,则∠COE的度数为()A.70° B.65° C.55° D.35°【解答】解:在菱形ABCD中,AC⊥BD,∠ABC=70°,∴∠BOC=90°,∠COB=∠ABC=35°,∴∠OCB=90°﹣35°=55°,∵E为BC的中点,∴OE=CE,∴∠COE=∠OCB=55°.故选:C.7.在一个不透明的袋子里装有5个红球和若干个白球,它们除颜色外其余完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计袋中的白球大约有()个A.25 B.20 C.15 D.10【解答】解:设白球个数为x个,∵摸到红色球的频率稳定在0.2左右,∴口袋中得到红色球的概率为0.2,∴=0.2,解得:x=20,即袋中的白球大约有20个;故选:B.8.用图中两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色,即可配成紫色(若指针指在分界线上,则重转),则配成紫色的概率为()A. B. C. D.【解答】解:列表如下:红蓝红(红,红)(蓝,红)蓝(红,蓝)(蓝,蓝)蓝(红,蓝)(蓝,蓝)由表格知共有6种等可能出现的结果数,其中能配成紫色的结果数有3种,则P(配成紫色)==,故选:C.9.某超市1月份营业额为100万元,2月、3月的营业额共400万元,如果平均每月营业额的增长率为x,则由题意可列方程()A.100(1+x)2=400 B.100(1+x)(1+2x)=400 C.100(1+x)(2+x)=400 D.100[1+(1+x)+(1+x)2]=400【解答】解:设平均每月增长率为x,100[(1+x)+(1+x)2]=400.即:100(1+x)(2+x)=400,故选:C.10.如图,正方形ABCD中,AB=12,点E在边CD上,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,且BG=CG,连接AG、CF.下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质得:AF=AD,∠AFE=∠D=90°,∴∠AFG=90°=∠B,AB=AF,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故①正确;∴∠BAG=∠FAG,由折叠可得,∠DAE=∠FAE,∴∠EAG=∠BAD=45°,故②正确;由题意得:EF=DE,BG=CG=6=GF,设DE=EF=x,则CE=12﹣x.在直角△ECG中,根据勾股定理,得CE2+CG2=GE2,即(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=4,CE=8,∴CE=2DE,故③正确;∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∵∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,∴∠AGB=∠GCF,∴AG∥CF,故④正确;∵S△GCE=GC•CE=×6×8=24,∵GF=6,EF=4,△GFC和△FCE等高,∴S△GFC:S△FCE=3:2,∴S△GFC=×24=,故⑤正确.故选:D.二.填空题(共5小题)11.方程x(x+2)=(x+2)的根为x1=1,x2=﹣2.【解答】解:x(x+2)﹣(x+2)=0,(x+2)(x﹣1)=0,x+2=0或x﹣1=0,x=﹣2或1.故答案为:x1=﹣2,x2=1.12.若x=2是方程x2+3x﹣2m=0的一个根,则m的值为5.【解答】解:把x=2代入,得22+3×2﹣2m=0,解得:m=5.故答案为:5.13.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=24,BD=10,DE⊥BC,垂足为点E,则DE=.【解答】解:∵四边形ABCD是菱形,∴AD=BC,AC⊥BD,AO=OC,DO=BO,∵AC=24,BD=10,∴AO=12,OD=5,由勾股定理得:AD=13,∴BC=13,∴S菱形ABCD=AC•BD=BC×DE,∴×24×10=13×DE,解得:DE=,故答案为:.14.若一元二次方程mx2+4x+5=0有两个不相等实数根,则m的取值范围m<且m≠0.【解答】解:∵一元二次方程mx2+4x+5=0有两个不相等实数根,∴Δ=b2﹣4ac=42﹣4×m×5=16﹣20m>0,解得:m<,∵m≠0,∴m的取值范围为:m<且m≠0.故答案为:m<且m≠0.15.已知α、β是方程x2+x﹣2=0的两个实数根,则代数式2α2+3α+β的值是3.【解答】解:∵α、β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,α2+α﹣2=0,∴α2+α=2,∴2α2+3α+β=2(α2+α)+α+β=2×2﹣1=3.故答案为:3.三.解答题(共7小题)16.用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0;(2)2x2﹣4x﹣7=0;(3)x2+x﹣1=0;(4)(2x﹣1)2﹣x2=0.【解答】解:(1)3(2x﹣1)2﹣12=0,移项,得3(2x﹣1)2=12,两边都除以3,得(2x﹣1)2=4,两边开平方,得2x﹣1=±2,移项,得2x=1±2,解得:x1=,x2=﹣;(2)2x2﹣4x﹣7=0,两边都除以2,得x2﹣2x﹣=0,移项,得x2﹣2x=,配方,得x2﹣2x+1=,即(x﹣1)2=,解得:x﹣1=±,即x1=1+,x2=1﹣;(3)x2+x﹣1=0,这里a=1,b=1,c=﹣1,∵b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,解得:x1=,x2=;(4)(2x﹣1)2﹣x2=0,方程左边因式分解,得(2x﹣1+x)(2x﹣1﹣x)=0,即(3x﹣1)(x﹣1)=0,解得:x1=,x2=1.17.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.【解答】解:(1)60÷10%=600(人)答:本次参加抽样调查的居民由600人;(2)600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%补全统计图如图所示:(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图:共有12种等可能情形,第二个恰好吃到的是C粽有3种情形,P(C粽)=.18.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?【解答】解:(1)设每件衬衫降价x元,商场平均每天盈利y元,则y=(40﹣x)(20+2x)=800+80x﹣20x﹣2x2=﹣2x2+60x+800,当y=1200时,1200=(40﹣x)(20+2x),解得x1=10,x2=20,经检验,x1=10,x2=20都是原方程的解,但要尽快减少库存,所以x=20,答:每件衬衫应降价20元;(2)∵y=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∴当x=15时,y的最大值为1250,答:当每件衬衫降价15元时,专卖店每天获得的利润最大,最大利润是1250元.19.已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【解答】解:(1)由题意得,关于x,y的方程组的相同解,就是方程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)该三角形是等腰直角三角形,理由如下:当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.20.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF∥AE.(1)求证:四边形BECF是菱形;(2)当∠A=45°时,四边形BECF是正方形;(3)在(2)的条件下,若AC=4,则四边形ABFC的面积为12.【解答】(1)证明:∵EF垂直平分BC,∴BF=FC,BE=EC,∴∠FCB=∠FBC,∵CF∥AE∴∠FCB=∠CBE,∴∠FBC=∠CBE,∵∠FDB=∠EDB,BD=BD,∴△FDB≌△EDB(ASA),∴BF=BE,∴BE=EC=FC=BF,∴四边形BECF是菱形;(2)解:当∠A=45°时,四边形BECF是正方形,理由如下:若四边形BECF是正方形,则∠ECB=∠FCB=45°,∵∠ACB=90°,∴∠ACE=45°,∵∠A=45°,∴∠AEC=90°,由(1)知四边形BECF是菱形,∴四边形BECF是正方形;故答案为:45;(3)解:由(2)知,四边形BECF是正方形,AE=BE=CE=2,∴四边形ABFC的面积为=12,故答案为:12.21.如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,动点D从点A出发以4cm/s速度向点C移动,同时动点E从C出发以3cm/s的速度向点B移动,设它们的运动时间为ts.(1)根据题意知:CE=3tcm,CD=(8﹣4t)cm;(用含t的代数式表示)(2)t为何值时,△CDE的面积等于四边形ABED的面积的?(3)点D、E运动时,DE的长可以是4cm吗?如果可以,请求出t的值,如果不可以,请说明理由.【解答】解:(1)∵动点D、E同时出发,动点E从C出发向点B移动,∴CE=3tcm,∵动点D从点A出发向点C移动,∴CD=(8﹣4t)cm,故答案为:3tcm,(8﹣4t)cm.(2)当△CDE的面积等于四边形ABED的面积的时,则△CDE的面积等于△ABC的面积的,根据题意得×3t(8﹣4t)=××8×6,整理得t2﹣2t+1=0,解得t1=t2=1,答:t=1,即运动1秒时,△CDE的面积等于四边形AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 移动医疗设备市场分析-洞察分析
- 水暖管道材料力学性能分析-洞察分析
- 《管道识图与施工》课件
- 水暖产业链协同发展-洞察分析
- 网络功能虚拟化性能优化-洞察分析
- 网络边缘安全密码算法-洞察分析
- 农村大病低保户申请书范文(6篇)
- 《建筑工程投标报价》课件
- 办公环境的未来趋势共享式与交互式公共空间发展研究
- 优化家庭生活节奏提高教育质量的时间管理方法
- 让财务助推业务-业财融合课件
- 华为绩效与激励:价值创造、价值评价、价值分配PPT版
- DB34∕T 2290-2022 水利工程质量检测规程
- 5.7双水相萃取解析课件
- 300mw汽轮机毕业设计论文
- 红领巾奖章我来争年红领巾争章启动课争章计划主题班会专题实用演示PPT课件
- 幼儿园课件:《认识国旗》
- 《高等教育学》知识点梳理(附答案)
- 乡镇卫生院医疗质量管理参考模板
- 张大千-ppt资料
- 内螺纹铜管成型技术与工艺(综述)
评论
0/150
提交评论