版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安地区八校2025届高三第三次测评数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是()A.29 B.30 C.31 D.322.已知圆:,圆:,点、分别是圆、圆上的动点,为轴上的动点,则的最大值是()A. B.9 C.7 D.3.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则()A. B. C.1 D.4.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是()A. B. C. D.5.如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则()A.在点F的运动过程中,存在EF//BC1B.在点M的运动过程中,不存在B1M⊥AEC.四面体EMAC的体积为定值D.四面体FA1C1B的体积不为定值6.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是()A. B. C.10 D.7.如图,在中,,是上的一点,若,则实数的值为()A. B. C. D.8.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.9.各项都是正数的等比数列的公比,且成等差数列,则的值为()A. B.C. D.或10.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()A.截止到2015年中国累计装机容量达到峰值B.10年来全球新增装机容量连年攀升C.10年来中国新增装机容量平均超过D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过11.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是()A.年该工厂的棉签产量最少B.这三年中每年抽纸的产量相差不明显C.三年累计下来产量最多的是口罩D.口罩的产量逐年增加12.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是()A. B. C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为_______.14.成都市某次高三统考,成绩X经统计分析,近似服从正态分布,且,若该市有人参考,则估计成都市该次统考中成绩大于分的人数为_____.15.已知等比数列{an}的前n项和为Sn,若a216.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:,,,,.②参考公式:相关系数,,.18.(12分)已知椭圆:,不与坐标轴垂直的直线与椭圆交于,两点.(Ⅰ)若线段的中点坐标为,求直线的方程;(Ⅱ)若直线过点,点满足(,分别为直线,的斜率),求的值.19.(12分)如图,四棱锥中,平面,,,.(I)证明:;(Ⅱ)若是中点,与平面所成的角的正弦值为,求的长.20.(12分)已知函数f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)对任意,都有恒成立,求实数a的取值范围;(3)证明:对一切,都有成立.21.(12分)若函数为奇函数,且时有极小值.(1)求实数的值与实数的取值范围;(2)若恒成立,求实数的取值范围.22.(10分)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线和直线的极坐标方程分别是()和(),其中().(1)写出曲线的直角坐标方程;(2)设直线和直线分别与曲线交于除极点的另外点,,求的面积最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求.【详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5===1.故选C.【点睛】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题.2、B【解析】试题分析:圆的圆心,半径为,圆的圆心,半径是.要使最大,需最大,且最小,最大值为的最小值为,故最大值是;关于轴的对称点,,故的最大值为,故选B.考点:圆与圆的位置关系及其判定.【思路点睛】先根据两圆的方程求出圆心和半径,要使最大,需最大,且最小,最大值为的最小值为,故最大值是,再利用对称性,求出所求式子的最大值.3、D【解析】
根据以直角边为直径的半圆的面积之比求得,即的值,由此求得和的值,进而求得所求表达式的值.【详解】由于直角边为直径的半圆的面积之比为,所以,即,所以,所以.故选:D【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题.4、A【解析】
先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.5、C【解析】
采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【详解】A错误由平面,//而与平面相交,故可知与平面相交,所以不存在EF//BC1B错误,如图,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正确四面体EMAC的体积为其中为点到平面的距离,由//,平面,平面所以//平面,则点到平面的距离即点到平面的距离,所以为定值,故四面体EMAC的体积为定值错误由//,平面,平面所以//平面,则点到平面的距离即为点到平面的距离,所以为定值所以四面体FA1C1B的体积为定值故选:C【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.6、D【解析】
直接根据几何概型公式计算得到答案.【详解】根据几何概型:,故.故选:.【点睛】本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.7、B【解析】
变形为,由得,转化在中,利用三点共线可得.【详解】解:依题:,又三点共线,,解得.故选:.【点睛】本题考查平面向量基本定理及用向量共线定理求参数.思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值.(2)直线的向量式参数方程:三点共线⇔(为平面内任一点,)8、D【解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.9、C【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比所满足的等量关系式,解方程即可得结果.详解:根据题意有,即,因为数列各项都是正数,所以,而,故选C.点睛:该题应用题的条件可以求得等比数列的公比,而待求量就是,代入即可得结果.10、D【解析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【点睛】本题考查条形图,考查基本分析求解能力,属基础题.11、C【解析】
根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.【详解】由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.故选:C.【点睛】本题考查堆积图的应用,考查数据处理能力,属于基础题.12、B【解析】
先根据导数的几何意义写出在两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数,结合导数求出最小值,即可选出正确答案.【详解】解:当时,,则;当时,则.设为函数图像上的两点,当或时,,不符合题意,故.则在处的切线方程为;在处的切线方程为.由两切线重合可知,整理得.不妨设则,由可得则当时,的最大值为.则在上单调递减,则.故选:B.【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出和的函数关系式.本题的易错点是计算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由分层抽样的知识可得,即,所以高三被抽取的人数为,应填答案.14、.【解析】
根据正态分布密度曲线性质,结合求得,即可得解.【详解】根据正态分布,且,所以故该市有人参考,则估计成都市该次统考中成绩大于分的人数为.故答案为:.【点睛】此题考查正态分布密度曲线性质的理解辨析,根据曲线的对称性求解概率,根据总人数求解成绩大于114的人数.15、-2【解析】试题分析:∵a2考点:等比数列性质及求和公式16、0.08【解析】
先求解这组数据的平均数,然后利用方差的公式可得结果.【详解】首先求得,.故答案为:0.08.【点睛】本题主要考查数据的方差,明确方差的计算公式是求解的关键,侧重考查数据分析的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)①②3.386(万元)【解析】
(1)利用代入数值,求出后即可得解;(2)①计算出、后,利用求出后即可得解;②把代入线性回归方程,计算即可得解.【详解】(1)由已知条件得,,∴,说明与正相关,且相关性很强.(2)①由已知求得,,所以,所求回归直线方程为.②当时,(万元),此时产品的总成本约为3.386万元.【点睛】本题考查了相关系数的应用以及线性回归方程的求解和应用,考查了计算能力,属于中档题.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根据点差法,即可求得直线的斜率,则方程即可求得;(Ⅱ)设出直线方程,联立椭圆方程,利用韦达定理,根据,即可求得参数的值.【详解】(1)设,,则两式相减,可得.(*)因为线段的中点坐标为,所以,.代入(*)式,得.所以直线的斜率.所以直线的方程为,即.(Ⅱ)设直线:(),联立整理得.所以,解得.所以,.所以,所以.所以.因为,所以.【点睛】本题考查中点弦问题的点差法求解,以及利用代数与几何关系求直线方程,涉及韦达定理的应用,属中档题.19、(Ⅰ)见解析;(Ⅱ)【解析】
(Ⅰ)取的中点,连接,由,,得三点共线,且,又,再利用线面垂直的判定定理证明.(Ⅱ)设,则,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,两式相加求得,再过作,则平面,即点到平面的距离,由是中点,得到到平面的距离,然后根据与平面所成的角的正弦值为求解.【详解】(Ⅰ)取的中点,连接,由,,得三点共线,且,又,,所以平面,所以.(Ⅱ)设,,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,两式相加得:,所以,,过作,则平面,即点到平面的距离,因为是中点,所以为到平面的距离,因为与平面所成的角的正弦值为,即,解得.【点睛】本题主要考查线面垂直的判定定理,线面角的应用,还考查了转化化归的思想和空间想象运算求解的能力,属于中档题.20、(1)(2)((3)见证明【解析】
(1)先求函数导数,再求导函数零点,列表分析导函数符号变化规律确定函数单调性,最后根据函数单调性确定最小值取法;(2)先分离不等式,转化为对应函数最值问题,利用导数求对应函数最值即得结果;(3)构造两个函数,再利用两函数最值关系进行证明.【详解】(1)当时,单调递减,当时,单调递增,所以函数f(x)的最小值为f()=;(2)因为所以问题等价于在上恒成立,记则,因为,令函数f(x)在(0,1)上单调递减;函数f(x)在(1,+)上单调递增;即,即实数a的取值范围为(.(3)问题等价于证明由(1)知道,令函数在(0,1)上单调递增;函数在(1,+)上单调递减;所以{,因此,因为两个等号不能同时取得,所以即对一切,都有成立.【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论