版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全国版天一大联考2025届高考数学全真模拟密押卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集U=R,集合,则()A. B. C. D.2.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.03.已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为()A. B.C. D.4.集合,则()A. B. C. D.5.若直线的倾斜角为,则的值为()A. B. C. D.6.已知等式成立,则()A.0 B.5 C.7 D.137.已知点(m,8)在幂函数的图象上,设,则()A.b<a<c B.a<b<c C.b<c<a D.a<c<b8.设函数,当时,,则()A. B. C.1 D.9.设,且,则()A. B. C. D.10.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10 B.9 C.8 D.711.已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长度后得到函数图象,则函数的解析式为()A. B.C. D.12.已知是虚数单位,则复数()A. B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数则______.14.如图所示,边长为1的正三角形中,点,分别在线段,上,将沿线段进行翻折,得到右图所示的图形,翻折后的点在线段上,则线段的最小值为_______.15.某市高三理科学生有名,在一次调研测试中,数学成绩服从正态分布,已知,若按成绩分层抽样的方式取份试卷进行分析,则应从分以上的试卷中抽取的份数为__________.16.在正方体中,已知点在直线上运动,则下列四个命题中:①三棱锥的体积不变;②;③当为中点时,二面角的余弦值为;④若正方体的棱长为2,则的最小值为;其中说法正确的是____________(写出所有说法正确的编号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.18.(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.19.(12分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合.以下记为的元素个数.(1)给出所有的元素均小于的好集合.(给出结论即可)(2)求出所有满足的好集合.(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍.20.(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点.若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.21.(12分)在中,内角所对的边分别为,已知,且.(I)求角的大小;(Ⅱ)若,求面积的取值范围.22.(10分)已知,(其中).(1)求;(2)求证:当时,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
求出集合M和集合N,,利用集合交集补集的定义进行计算即可.【详解】,,则,故选:A.【点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题.2、C【解析】
集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.3、B【解析】
由双曲线的对称性可得即,又,从而可得的渐近线方程.【详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的渐近线方程为.故选B【点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.4、D【解析】
利用交集的定义直接计算即可.【详解】,故,故选:D.【点睛】本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.5、B【解析】
根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.【详解】由于直线的倾斜角为,所以,则故答案选B【点睛】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.6、D【解析】
根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【详解】由可知:令,得;令,得;令,得,得,,而,所以.故选:D【点睛】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.7、B【解析】
先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)=x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.【详解】由幂函数的定义可知,m﹣1=1,∴m=2,∴点(2,8)在幂函数f(x)=xn上,∴2n=8,∴n=3,∴幂函数解析式为f(x)=x3,在R上单调递增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故选:B.【点睛】本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题.8、A【解析】
由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.【详解】,时,,,∴,由题意,∴.故选:A.【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.9、C【解析】
将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.10、B【解析】
根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值.【详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知所以因为为线段长度,都大于0,由基本不等式可知,此时所以选B【点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题.11、C【解析】
根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的解析式.【详解】函数,由辅助角公式化简可得,因为为函数图象的一条对称轴,代入可得,即,化简可解得,即,所以将函数的图象向右平行移动个单位长度可得,则,故选:C.【点睛】本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.12、A【解析】
根据复数的基本运算求解即可.【详解】.故选:A【点睛】本题主要考查了复数的基本运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先由解析式求得(2),再求(2).【详解】(2),,所以(2),故答案为:【点睛】本题考查对数、指数的运算性质,分段函数求值关键是“对号入座”,属于容易题.14、【解析】
设,,在中利用正弦定理得出关于的函数,从而可得的最小值.【详解】解:设,,则,,∴,在中,由正弦定理可得,即,∴,∴当即时,取得最小值.故答案为.【点睛】本题考查正弦定理解三角形的应用,属中档题.15、【解析】
由题意结合正态分布曲线可得分以上的概率,乘以可得.【详解】解:,所以应从分以上的试卷中抽取份.故答案为:.【点睛】本题考查正态分布曲线,属于基础题.16、①②④【解析】
①∵,∴平面
,得出上任意一点到平面的距离相等,所以判断命题①;②由已知得出点P在面上的射影在上,根据线面垂直的判定和性质或三垂线定理,可判断命题②;③当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,运用二面角的空间向量求解方法可求得二面角的余弦值,可判断命题③;④过作平面交于点,做点关于面对称的点,使得点在平面内,根据对称性和两点之间线段最短,可求得当点在点时,在一条直线上,取得最小值.可判断命题④.【详解】①∵,∴平面
,所以上任意一点到平面的距离相等,所以三棱锥的体积不变,所以①正确;
②在直线上运动时,点P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正确;③当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,设正方体的棱长为2.则:,,所以,设面的法向量为,则,即,令,则,设面的法向量为,,即,,由图示可知,二面角是锐二面角,所以二面角的余弦值为,所以③不正确;④过作平面交于点,做点关于面对称的点,使得点在平面内,则,所以,当点在点时,在一条直线上,取得最小值.因为正方体的棱长为2,所以设点的坐标为,,,所以,所以,又所以,所以,,,故④正确.
故答案为:①②④.【点睛】本题考查空间里的线线,线面,面面关系,几何体的体积,在求解空间里的两线段的和的最小值,仍可以运用对称的思想,两点之间线段最短进行求解,属于难度题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)把转化成,令,由题意得,即证明恒成立,通过导数求证即可(2)直接求导可得,,令,得或,故根据0与的大小关系来进行分类讨论即可【详解】证明:(1)令,则.分析知,函数的增区间为,减区间为.所以当时,.所以,即,所以.所以当时,.解:(2)因为,所以.讨论:①当时,,此时函数在区间上单调递减.又,故此时函数仅有一个零点为0;②当时,令,得,故函数的增区间为,减区间为,.又极大值,所以极小值.当时,有.又,此时,故当时,函数还有一个零点,不符合题意;③当时,令得,故函数的增区间为,减区间为,.又极小值,所以极大值.若,则,得,所以,所以当且时,,故此时函数还有一个零点,不符合题意.综上,所求实数的值为.【点睛】本题考查不等式的恒成立问题和函数的零点问题,本题的难点在于把导数化成因式分解的形式,如,进而分类讨论,本题属于难题18、(1)(2)证明见解析【解析】
(1)先求得导函数,根据两个极值点可知有两个不等实根,构造函数,求得;讨论和两种情况,即可确定零点的情况,即可由零点的情况确定的取值范围;(2)根据极值点定义可知,,代入不等式化简变形后可知只需证明;构造函数,并求得,进而判断的单调区间,由题意可知,并设,构造函数,并求得,即可判断在内的单调性和最值,进而可得,即可由函数性质得,进而由单调性证明,即证明,从而证明原不等式成立.【详解】(1)函数则,因为存在两个极值点,,所以有两个不等实根.设,所以.①当时,,所以在上单调递增,至多有一个零点,不符合题意.②当时,令得,0减极小值增所以,即.又因为,,所以在区间和上各有一个零点,符合题意,综上,实数的取值范围为.(2)证明:由题意知,,所以,.要证明,只需证明,只需证明.因为,,所以.设,则,所以在上是增函数,在上是减函数.因为,不妨设,设,,则,当时,,,所以,所以在上是增函数,所以,所以,即.因为,所以,所以.因为,,且在上是减函数,所以,即,所以原命题成立,得证.【点睛】本题考查了利用导数研究函数的极值点,由导数证明不等式,构造函数法的综合应用,极值点偏移证明不等式成立的应用,是高考的常考点和热点,属于难题.19、(1),,,.(2);证明见解析.(3)证明见解析.【解析】
(1)根据好集合的定义列举即可得到结果;(2)设,其中,由知;由可知或,分别讨论两种情况可的结果;(3)记,则,设,由归纳推理可求得,从而得到,从而得到,可知存在元素满足题意.【详解】(1),,,.(2)设,其中,则由题意:,故,即,考虑,可知:,或,若,则考虑,,,则,,但此时,,不满足题意;若,此时,满足题意,,其中为相异正整数.(3)记,则,首先,,设,其中,分别考虑和其他任一元素,由题意可得:也在中,而,,,对于,考虑,,其和大于,故其差,特别的,,,由,且,,以此类推:,,此时,故中存在元素,使得中所有元素均为的整数倍.【点睛】本题考查集合中的新定义问题的求解,关键是明确已知中所给的新定义的具体要求,根据集合元素的要求进行推理说明,对于学生分析和解决问题能力、逻辑推理能力有较高的要求,属于较难题.20、(1)(2)定值为0.【解析】
(1)根据直线方程求焦点坐标,即得c,再根据离心率得,(2)先设直线方程以及各点坐标,化简,再联立直线方程与椭圆方程,利用韦达定理代入化简得结果.【详解】(1)因为直线过椭圆的右焦点,所以,因为离心率为,所以,(2),设直线,则因此由得,所以,因此即【点睛】本题考查椭圆方程以及直线与椭圆位置关系,考查综合分析求解能力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版土地租赁及资源开发合同3篇
- 2025版二手豪华轿车买卖及车主尊享保养套餐合同3篇
- 山东省济宁市曲阜市2024-2025学年九年级上学期期末历史试题(含答案)
- 公共基础-试验检验师(含助理)《公共基础》模拟试卷5
- 公交车辆电动化发展趋势分析考核试卷
- 二零二五年港口拖轮服务与海运运输合同3篇
- 2025年健康养生孕前保养合同
- 2025年在线美食分享平台用户注册协议
- 2025年体育器材赠与协议
- 二零二五年肉牛养殖项目配套购牛合同3篇
- 湖北省黄石市阳新县2024-2025学年八年级上学期数学期末考试题 含答案
- 硝化棉是天然纤维素硝化棉制造行业分析报告
- 央视网2025亚冬会营销方案
- 《00541语言学概论》自考复习题库(含答案)
- 《无砟轨道施工与组织》 课件 第十讲双块式无砟轨道施工工艺
- 江苏省南京市、盐城市2023-2024学年高三上学期期末调研测试+英语+ 含答案
- 2024新版《药品管理法》培训课件
- 《阻燃材料与技术》课件 第7讲 阻燃橡胶材料
- 爆炸物运输安全保障方案
- 江苏省南京市2025届高三学业水平调研考试数学试卷(解析版)
- 2024年黑龙江省哈尔滨市中考数学试卷(附答案)
评论
0/150
提交评论