版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Promptingforaction
HowAIagentsarereshapingthefutureofwork
Expandedcapabilities,usecasesandenterpriseimpactfromGenerativeAI
November2024
DeloitteAIInstitute
Promptingforaction|HowAIagentsarereshapingthefutureofwork
AbouttheDeloitteAIInstitute
TheDeloitteAIInstituteTMhelpsorganizationsconnectthedifferentdimensions
ofarobust,highlydynamicandrapidlyevolvingAIecosystem.TheInstituteleads
conversationsonappliedAIinnovationacrossindustries,withcutting-edgeinsights,topromotehuman-machinecollaborationinthe“AgeofWith.”
TheDeloitteAIInstituteaimstopromoteadialogueanddevelopmentofartificial
intelligence,stimulateinnovation,andexaminebothchallengestoAIimplementation
andwaystoaddressthem.TheInstitutecollaborateswithanecosystemcomposedof
academicresearchgroups,startups,entrepreneurs,innovators,matureAIproductleadersandAIvisionariestoexplorekeyareasofartificialintelligenceincludingrisks,policies,
ethics,futureofworkandtalent,andappliedAIusecases.CombinedwithDeloitte’sdeepknowledgeandexperienceinartificialintelligenceapplications,theInstitutehelpsmakesenseofthiscomplexecosystem,andasaresultdeliversimpactfulperspectivestohelporganizationssucceedbymakinginformedAIdecisions.
NomatterwhatstageoftheAIjourneyyou’rein,whetheryou’reaboardmemberora
C-suiteleaderdrivingstrategyforyourorganizationorahands-ondatascientistbringinganAIstrategytolife,theInstitutecanhelpyoulearnmoreabouthoworganizationsacrosstheworldareleveragingAIforacompetitiveadvantage.VisitusattheDeloitteAIInstitutetoaccessthefullbodyofourwork,subscribetoourpodcastsandnewsletter,andjoinusatourmeetupsandliveevents.Let’sexplorethefutureofAItogether.
/us/AIInstitute
2
Promptingforaction|HowAIagentsarereshapingthefutureofwork
Content
Keytakeaways
•AIagentsarereshapingindustriesbyexpandingthepotentialapplicationsofGenerativeAI(GenAI)andtypicallanguagemodels.
•MultiagentAIsystemscansignificantlyenhancethequalityofoutputsandcomplexityofworkperformedbysingleAIagents.
•Forward-thinkingbusinessesandgovernmentsarealreadyimplementingAIagentsandmultiagentAIsystemsacrossarangeofusecases.
•Executiveleadersshouldmakemovesnowtoprepareforandembracethisnexteraofintelligentorganizationaltransformation.
Introduction4
AIagents:5
Whatmakesthemdifferent—andwhytheymatter
MultiagentAIsystems:7
AmplifyingthepotentialofAIagents
KeybenefitsofAIagentsandmultiagentAIsystems:7
AdvantagesthatAIagentsareunlockingfororganizationstoday
Transformingstrategicinsights:8
Areal-worldexampleofamultiagentAIsystem
Achievingimpactthroughtargetedusecases:11
HowAIagentsarechangingindustriesandenterprisedomains
Enablingnewwaysofworkingandnewhorizonsofinnovation:13
Implicationsforstrategy,risk,talent,businessprocessesandtechnology
Theroadahead:15
WhatweexpectasAIagentscontinuetoevolve
Chartingacourseintothenexteraoforganizationaltransformation:16
Recommendedactionsforleaderstotakenow
Getintouch&Endnotes17
3
Promptingforaction|HowAIagentsarereshapingthefutureofwork
4
Introduction
Howcanweoperatefasterandmoreefficiently?
Thisquestionhasalwaysbeenattheforefrontofstrategic
agendas—butGenerativeAI(GenAI)ishelpingunlocknew
answers.Withitsabilitytoproducenoveloutputsfromplain-
languageprompts,GenAIhasenabledenterprisestosignificantlyenhancespeedandproductivityacrossarangeofbusinesstasks.However,usecasesfortypicallanguagemodelshaveonlyjust
beguntoshowGenAI’stransformativepotential.InthistimeofrapidAIevolution,it’stimetothinkbiggerandbolder:from
streamliningroutinetaskstoredesigningentireworkflows.
Nowthequestionforbusinessandgovernmentleadersisbecoming:
HowcanwerethinkourbusinessprocesseswithGenAI?
Largelanguagemodels(LLMs)andGenAI-poweredtoolsusedbymostorganizationstodayserveashelpfulassistants:Ahumanworkerentersaprompt,GenAIquicklyproducesanoutput.
However,thisinteractionislargelytransactionalandlimitedinscope.
WhatifGenAIcouldbemorelikeaskilledcollaboratorthatwillnotonlyrespondtorequestsbutalsoplanthewholeprocesstohelpsolveacomplexneed?WhatifGenAIcouldalsotapintothenecessarydata,digitaltoolsandcontextualknowledgetoorchestratetheprocessendtoend,autonomously?
Adaptorfallbehind
Attheendof2023,nearly1in6
surveyedbusinessleaderssaid
GenAIhadalreadytransformedtheirbusinesses1
ThisvisionisbecomingarealitywiththeemergenceofAIagentsandmultiagentAIsystems—apowerfuladvancementinwhat’spossiblethroughhuman-AIpartnership.LeadingcompaniesandgovernmentagenciesarealreadyseeingthevalueofAIagentsandputtingthemintopractice.
Inthispaper,weexplorewhatmakesAIagentssogroundbreaking.Wethenrevealhowtheyarereshapingindustries,including
governmentandpublicservices,byenablingnewusecases,
enhancingautomationandacceleratingthefutureofintelligentorganizationaltransformation.
Promptingforaction|HowAIagentsarereshapingthefutureofwork
AIagents:Whatmakesthemdifferent—andwhytheymatter
TograspthepotentialvalueofAIagentsandtheirrolein
expandingtheautomationhorizon,itisimportanttounderstandhowtheydifferfromthelanguagemodelsandGenAIapplicationsfamiliartobusinessleaderstoday.
AIagentsarereasoningenginesthatcanunderstandcontext,planworkflows,
connecttoexternaltoolsanddata,andexecuteactionstoachieveadefinedgoal.
WhilethismaysoundbroadlylikewhatstandaloneLLMsor
GenAIapplicationscando,therearekeydistinctionsthat
makeAIagentssignificantlymorepowerful.(Seetable,page6.)
TypicalLLM-poweredchatbots,forexample,usuallyhavelimitedabilitytounderstandmultistepprompts—muchlesstoplanandexecutewholeworkflowsfromasingleprompt.Inessence,they
conformtothe“input-output”paradigmoftraditionalapplicationsandcangetconfusedwhenpresentedwitharequestthatmust
bedeconstructedintomultiplesmallertasks.Theyalsostruggletoreasonoversequences,suchascompositionaltasksthatrequireconsiderationoftemporalandtextualcontexts.Theselimitationsareevenmorepronouncedwhenusingsmalllanguagemodels
(SLMs),which,becausetheyaretrainedonsmallervolumesofdata,typicallysacrificedepthofknowledgeand/orqualityofoutputsinfavorofimprovedcomputationalcostandspeed.
Asaresult,earlyGenAIusecaseshavemostlybeenlimitedtostandaloneapplicationssuchasgeneratingpersonalizedadsbasedonacustomer’ssearchhistory,reviewingcontractsandlegaldocumentstoidentifypotentialregulatoryconcerns,
orpredictingmolecularbehavioranddruginteractionsinpharmaceuticalresearch.
AIagentsexcelinaddressingtheselimitationswhilealso
leveragingcapabilitiesofdomain-andtask-specificdigitaltoolstocompletemorecomplicatedtaskseffectively.Forexample,
AIagentsequippedwithlong-termmemorycanremember
customerandconstituentinteractions—includingemails,chatsessionsandphonecalls—acrossdigitalchannels,continuouslylearningandadjustingpersonalizedrecommendations.This
contrastswithtypicalLLMsandSLMs,whichareoftenlimitedtosession-specificinformation.Moreover,AIagentscanautomateend-to-endprocesses,particularlythoserequiringsophisticatedreasoning,planningandexecution.
AIagentsareopeningnewpossibilitiestodriveenterprise
productivityandprogramdeliverythroughbusinessprocess
automation.UsecasesthatwereoncethoughttoocomplicatedforGenAIcannowbeenabledatscale—securelyandefficiently.
Inotherwords:AIagentsdon’tjustinteract.Theymoreeffectivelyreasonandactonbehalfoftheuser.
5
Promptingforaction|HowAIagentsarereshapingthefutureofwork
Anewparadigmfor
human-machinecollaboration
Throughtheirabilitytoreason,plan,rememberandact,
AIagentsaddresskeylimitationsoftypicallanguagemodels.
AIagents
Typicallanguagemodels
Automateentireworkflows/processes
Createandexecutemultistepplanstoachieveauser’sgoal,adjustingactionsbasedon
real-timefeedback
Utilizeshort-termandlong-termmemorytolearnfromprevioususerinteractionsand
providepersonalizedresponses;Memorymaybesharedacrossmultipleagentsinasystem
AugmentinherentlanguagemodelcapabilitieswithAPIsandtools(e.g.,dataextractors,imageselectors,searchAPIs)toperformtasks
Adjustdynamicallytonewinformationandreal-timeknowledgesources
Canleveragetask-specificcapabilities,knowledgeandmemorytovalidateandimprovetheirownoutputsandthoseofotheragentsinasystem
Usecasescope
Planning
Memory&fine-tuning
Tool
integration
Data
integration
Accuracy
Automatetasks
Arenotcapableofplanningororchestratingworkflows
Donotretainmemoryandhavelimitedfine-tuningcapabilities
Arenotinherentlydesignedtointegratewithexternaltoolsorsystems
Relyonstaticknowledgewithfixedtrainingcutoffdates
Typicallylackself-assessmentcapabilitiesandarelimitedtoprobabilisticreasoningbasedontrainingdata
6
Promptingforaction|HowAIagentsarereshapingthefutureofwork
7
MultiagentAIsystems:
AmplifyingthepotentialofAIagents
WhileindividualAIagentscanoffervaluableenhancements,the
trulytransformativepowerofAIagentscomeswhentheywork
togetherwithotheragents.Suchmultiagentsystemsleverage
specializedroles,enablingorganizationstoautomateandoptimizeprocessesthatindividualagentsmightstruggletohandlealone.
MultiagentAIsystemsemploy
multiple,role-specificAIagentsto
understandrequests,planworkflows,coordinaterole-specificagents,
streamlineactions,collaboratewithhumansandvalidateoutputs.
MultiagentAIsystemstypicallyinvolvestandard-taskagents(e.g.,userinterfaceanddatamanagementagents)workingwithspecialized-skilland-toolagents(e.g.,dataextractoror
imageinterpreteragents)toachieveagoalspecifiedbyauser.
AtthecoreofeveryAIagentisalanguagemodelthatprovides
asemanticunderstandingoflanguageandcontext—but
dependingontheusecase,thesameordifferentlanguagemodelsmaybeusedbyagentsinasystem.Thisapproachcanallowsomeagentstoshareknowledgewhileothersvalidateoutputsacross
thesystem—improvingqualityandconsistencyintheprocess.
Thatpotentialisfurtherenhancedbyprovidingagentswithsharedshort-andlong-termmemoryresourcesthatreducethe
needforhumanpromptingintheplanning,validationanditerationstagesofagivenprojectorusecase.
Thisconceptextendswhat’spossiblewithindividualAIagents
bytakingateamoragencyapproach.Bydecomposingadetailedprocessintomultipletasks,assigningtaskstoagentsoptimizedtoperformthetasks,andorchestratingagentandhuman
collaborationateachstageoftheworkflow,thistypeofsystemhasprovenmuchmorelikelytoproducehigherquality,fasterandmoretrustworthyoutcomes.2,3
Inotherwords:MultiagentAIsystemsdon’tjustreason
andactonbehalfoftheuser.Theycanorchestratecomplexworkflowsinamatterofminutes.
KeybenefitsofAIagents
andmultiagentAIsystems
Capability—AIagentscanautomateinteractionswithmultipletoolstoperformtasksthatstandalonelanguagemodelswerenotdesignedtoachieve(e.g.,browsinga
website,quantitativecalculations).
Productivity—WhereasstandaloneLLMsrequireconstanthumaninputandinteractiontoachievedesiredoutcomes,AIagentscanplanandcollaboratetoexecutecomplex
workflowsbasedonasingleprompt—significantlyspeedingthepathtodelivery.
Self-learning—Bytappingshort-andlong-termcontextualmemoryresourcesthatareoftenunavailableinapre-trainedlanguagemodel,AIagentscanrapidlyimprovetheiroutputqualityovertime.
Adaptability—Asneedschange,AIagentscanreasonandplannewapproaches,rapidlyreferencenewand
real-timedatasources,andengagewithotheragentstocoordinateandexecuteoutputs.
Accuracy—AkeyadvantageofmultiagentAIsystemsistheabilitytoemploy“validator”agentsthatinteractwith“creator”agentstotestandimprovequalityandreliabilityaspartofanautomatedworkflow.
Intelligence—Whenagentsspecializinginspecifictasks
worktogether—eachapplyingitsownmemorywhileutilizingitsowntoolsandreasoningcapabilities—newlevelsof
machine-poweredintelligencearemadepossible.
Transparency—MultiagentAIsystemsenhancetheabilitytoexplainAIoutputsbyshowcasinghowagentscommunicateandreasontogether,providingaclearerviewofthecollectivedecision-makingandconsensus-buildingprocess.
Promptingforaction|HowAIagentsarereshapingthefutureofwork
Transformingstrategicinsights
Nomattertheindustry,everyorganizationengagesinresearch,analysisandreporting—whetherabouteconomicconditions,customerandconstituentpreferences,policyandpricingstrategies,orothertopics.
Traditionally,theseprojectsrequireskilledhumananalyststoperformmultiplesteps,whichcanbetime-consuming,utilizingresearchandanalysistoolsalongwithin-housesubjectmatterexpertise.
Here’swhatatraditionalresearchprojecttypicallylookslike.
Analyst
Stakeholder
>
Analystidentifiestopicand
scope:Areportonthetop5
GenAItrendsinfinancialservices,basedonpubliclyavailabledatafromtheprior3months.
<>
AnalystAnalystselectssources,
searchesandcompiles
relevantinformation,and
organizesmaterialsandnotes.
Analyst
Analystsynthesizesthemes
andperspectives,outlinesa
planforthereportandsendstobusinessstakeholderforreview.
Analystdraftsthereportandsendstostakeholder,whoprovidesfeedback
anditerateswithanalyst.
Analystsendsapprovedreporttodesigner.
Analyst
StakeholderprovidesStakeholder
feedbackonoutline.
Analystordesignerresearchesimages,developsgraphicsanddesignsreport.
<>
<>
ProoferRisk&compliance
Analyst
orDesigner
Prooferreviewsreportand
providesfeedback,whichanalyst
and/ordesignerincorporate.
Risk&complianceprofessionalsareengagedasneeded.
Finalreportisdelivered.
Whileeffectiveandrepeatable,thisapproachis…
像
Time-consuming
Completingasinglereportcantakedaysorweeks,makingitdifficulttoseizeemergingopportunities.
8
Inefficient
Skilledanalystsmustperformmanyrepetitiveactivitiesthattaketheir
focusawayfromhigher-levelanalysis.
Difficulttoscale
Companiesandgovernmentagenciescanstruggletohireandretainenoughskilled,experiencedanalyststogrowtheirresearchcapacity.
Promptingforaction|HowAIagentsarereshapingthefutureofwork
“Pleasetellmeaboutyourrequest”
DeloittehasdevelopedamultiagentAIsystemthatcanstreamlineandimproveeachstepofresearchandreporting.Here’showitworks.
“IneedtowriteareportaboutGenAItrendsinmyindustry.”
<>
Analyst
User
interface
Analystandinterfaceagentdiscussanddefinereport
scope,sourcesandtimeframefordatacollection,targetindustryandaudience,etc.Throughthisprocess,theanalystdefinesthedeliverable:Areportonthetop5GenAItrendsinfinancialservices,basedonpubliclyavailabledatafromtheprior3months.
<>
<>
AIAGENTTYPES
Specialized-skill&-toolagents
Role-specificagents
thatexecutespecifictaskswithinthe
workflow
Allagentscanaccess…
•Languagemodels(sharedorseparate)
•Externaltools&datasourcesasneeded
•Sharedshort-andlong-termmemory
Standard-taskagent(s)
Oneormoreagents
thatperformtaskscommontoall
workflows
Planningagentbreaksthegoalinto
subprocesses,developsaworkflowandidentifiesnecessarytoolsandspecializedagentstoexecutetheworkflow.
File
management
MultimodalPlanning
processing
Web
browsing
Topic
modeling
Reportwriting
Promptexpanding
Data
sourcing
Content
summarization
Qualityassurance
Report
formatting
Data
visualizing
Imageselection
Data
structuring
Specializedagentsexpandprompts,conductresearch,compileandanalyzeresults,identifythemesanddraftthereportoutline.Asneeded,themultimodalprocessingagenttranslatesandinterpretsdatacollectedfromvisualandaudiosources.Oncetheoutlineisapproved/adjustedbytheanalyst,additionalspecializedagentsdraftanddesignthereportcompletewithcustomizedchartsandillustrations.
Throughouttheprocess,thequalityassuranceagentchecksforaccuracy,qualityandregulatory/brandcompliance,whilethedatamanagementagentensuressourcematerialsandreportiterationsare
documentedforreference/review.
<
Analystreviewsthereportandrequestschanges.Thesystemiteratesandrefinesthereport.
Analyst
>
Finalreportisdelivered.
Inadditiontobeingeffectiveandrepeatable,thisAIagent-poweredapproachis…
Highlyscalable
Inessence,thissystemprovidesaninstantlyavailableteamofskilleddigitalworkers.
9
Efficient
Skilledprofessionalscanfocuson
validating,iteratingandrefiningthereport.
Fast
Asingle,qualityreportcanbeproducedinlessthananhour.
Promptingforaction|HowAIagentsarereshapingthefutureofwork
Effectiveandefficientworkdependsoncreativityandknowledgeaugmentedbywell-plannedprocessesandtask-appropriatetools.
That’swhatAIagentsandmultiagentAIsystemscanbringtogether.
10
Promptingforaction|HowAIagentsarereshapingthefutureofwork
11
Achievingimpactthroughtargetedusecases
OrganizationsacrossindustriesandsectorsarealreadyleveragingthepotentialofAIagentsandmultiagentsystemstotransformprocesses,improveefficiency,andexpandimpact.Let’sexplorefourusecases
thatarepossibletoday—twoinspecificindustries,andtwothatcanbeappliedinanybusiness.
1USECASE
Individualizedfinancialadvisoryandwealthmanagement
INDUSTRY:Financialservices
Financialadvisoryservicesoftenhavereliedonbroad
categorizationsofcustomersbasedonage,incomeandrisk
tolerance.Thisapproachcanoftenmissthecomplexitiesof
individualfinancialsituationsandgoals.Intoday’srapidlychangingfinanciallandscape,thereisanincreasingdemandforpersonalized,adaptivefinancialadvice.MultiagentAIsystemscananalyzediversedatasources—includingthecustomer’sfinancialhistory,real-timemarketdata,lifeeventsandevenbehavioralpatterns—tohelp
adviserscreatefinancialplansandinvestmentstrategiestailoredforthespecificindividual.AIagentscanthencontinuouslymonitorandadjustrecommendationsascircumstanceschange.
POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:
Hyperpersonalization
Customizefinancialadvicetoeachcustomer’sspecificneedsandgoals,consideringfactorsthatothermethodsmightoverlook.
Continuousfine-tuning
Automaticallyupdatefinancialplansand
strategiesinresponsetochangesinmarketconditionsorpersonalcircumstances.
Improvedcustomersatisfaction
Strengthencustomerrelationshipsby
providingmorerelevantandtimelyadvice,leadingtohigherretentionandsatisfaction.
2USECASE
Dynamicpricingand
personalizedpromotions
INDUSTRY:Consumer
Standardpricingstrategiesofteninvolvestaticmodelsthatdonotaccountforreal-timemarketconditions,customerbehaviororinventorylevels.MultiagentAIsystemscanrapidlyintegrateanalysisbasedonvastamountsofreal-timedata—suchas
competitorpricing,customerpurchasehistoryandseasonaltrends—todynamicallyadjustprices.Additionally,theycan
personalizepromotionsbasedonindividualcustomer
preferences,attributesandshoppinghabitswiththegoalof
improvingconversionratesandelevatingcustomersatisfaction.
POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:
Fasteradaptation
Adjustpricesinstantlyinresponseto
marketchanges,inventorylevelsor
customerdemand—optimizingrevenue.
Personalizedoffers
Tailorpromotionstoeachcustomer’s
preferencesandbehavior,increasingthelikelihoodofpurchase.
Greaterprofitability
Maximizemarginsandminimizediscountingbyoptimizingpricingandpromotionsonanongoingbasis.
Enhancedscalability
Servealargernumberofcustomerswithhigh-quality,personalizedadvicewithoutraisingcoststodeliver.
Promptingforaction|HowAIagentsarereshapingthefutureofwork
12
3USECASE
TalentacquisitionandrecruitmentDOMAIN:Humanresources(HR)
Traditionalrecruitmentprocessesofteninvolvemanualresume
screening,repetitivecandidateassessmentsandsignificant
administrativework—whichcanleadtoinefficiencies.AIagents
canautomatetheend-to-endrecruitmentprocessbyusingnaturallanguageprocessingtoanalyzeresumes,assesscandidatesbasedonskillsandexperience,andconductinitialscreeninginterviewsviaGenAI-poweredavatars.Thesesystemscancollaboratewith
HRprofessionalstoensurethatqualifiedcandidatesareidentified,prioritizedandmovedthroughthehiringpipelineefficientlywhileadheringtorelevantregulations.
POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:
Increasedefficiency
AutomatetaskstoallowHRteams
tofocusonstrategicactivities,shorteningthetimetohire.
Improvedcandidatematching
Analyzeabroaderrangeofdatapointstohelpmatchcandidatestorolesmoreaccurately,
improvingthequalityofhires.
Reducedbias
Bystandardizingcandidateassessmentsand
focusingonskillsandexperience,AIagentscanhelpaddressunconsciousbiasintherecruitmentprocess.
4USECASE
Personalizedcustomersupport
DOMAIN:Customerandbeneficiaryservice
Traditionalcustomerandbeneficiarysupportsystemsoftenrelyonscriptedinteractions,whichcanfailtoresolvecomplexoruniqueinquiries—leadingtocustomerfrustrationandescalation.
Incontrast,multiagentAIsystemscanunderstandplain-languagerequestsandgeneraterelevantandnaturalresponsesthat
considerthecustomer’shistory,preferencesandreal-timecontext.Theseadvancedsystemscanhandlemanycomplexinquiries
effectively—reducingtheneedforescalationtoliveagentswhileimprovingcustomer/beneficiarysatisfaction.
POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:
Greaterconsistencyandscalability
AIagentscanoperate24/7withoutfatigue,maintainingaconsistentqualityofservicenomatterthevolumeofinquiries.
Improvedcustomerexperiences
Eachcustomerinteractioncanbeadjustedtoindividualneeds,improvingsatisfactionandengagement.
Compoundingefficiencies
Theabilitytolearnfromeachinteractioncanhelpreduceresponsetimes,improvequality,andfreeuphumanserviceagentstofocusonmorenuancedcustomerrequests.
Dynamicscalability
Handlelargevolumesofapplications,makingiteasiertomanagehiringcampaignsorrecruitformultiplerolessimultaneously.
Promptingforaction|HowAIagentsarereshapingthefutureofwork
Enablingnewwaysofworkingandnewhorizonsofinnovation
Aslanguagemodelscontinuetoevolve,AIagentsandsystemsarelikelytobecomestrategicresourcesandefficiencydriversforcorebusinessandgovernmentactivitiessuchasproductdevelopment,regulatorycompliance,customerservice,constituentengagement,organizationaldesignandothers.Weseeafutureinwhich
agentswilltransformfoundationalbusinessmodelsandentireindustries,enablingnewwaysofworking,operatinganddeliveringvalue.
That’swhyit’simportantforC-suiteandpublicserviceleaderstobeginpreparingnowforthisnextchapterintheevolutionofhuman-machinecollaborationandbusinessinnovation.
Let’sexploresomeofthenewwaysofthinkingandleadingthatshouldbeconsideredduringthistimeofrapidchange.
Strategyimplications
LeadersshouldbeginintegratingAIagentsandmultiagent
AIsystemsintotheiroverallstrategiesandfutureroadmaps.Thisinvolvesreimaginingbusinessprocesses,investinginAI
capabilities,andfosteringculturesofinnovation.OrganizationsshoulddeveloptheirownclearroadmapforAIagentadoption,identifyingkeyareaswheretheycandrivethemostvalueand
Riskimplications
AIagentsintroducenewrisksthatnecessitaterobustsecurity
andgovernancestructures.AsignificantriskispotentialbiasinAI
algorithmsandtrainingdata,whichcanleadtoinequitabledecisions.Additionally,AIagentscanbevulnerabletodatabreachesand
cyberattacks,compromisingsensitiveinformationanddataintegrity.ThecomplexityofAIsystemsalsopresentstheriskofunintended
consequencesduetoAIagentsbehavingunpredictablyormakingdecisionsnotalignedwithorganiz
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肠阿米巴病病因介绍
- 肝衰竭病因介绍
- 部编版四年级语文上册第三单元导读《处处留心皆学问》精美课件
- 老年人喉癌病因介绍
- 《客户关系管理实务》电子教案 30客户服务概述
- 北师大版七年级生物上册第2单元第4章第2节生物体的器官、系统教学课件
- 《短文三篇》课件
- 教科版小学综合实践6下(教案+课件)6 让我们的学校更美好 庄诗倩
- 《神经系统查体》课件
- 《BAS架构培训》课件
- (附答案)焊工(初级)模拟试题
- 建筑工程施工质量样板引路工作指引
- 2024苹果VisionPro技术拆解
- 交通运输的大数据应用与分析
- 技术部门内部管理制度模版
- 建筑工程绿色施工
- 国外网络舆情治理特色模式 典型经验与现实启示
- 顶管施工标准规范
- 网球团建活动方案
- 《比尾巴》动物知识融入
- 《儿科常见急症处理》课件
评论
0/150
提交评论