AI Agents如何重塑未来的工作(2024年)_第1页
AI Agents如何重塑未来的工作(2024年)_第2页
AI Agents如何重塑未来的工作(2024年)_第3页
AI Agents如何重塑未来的工作(2024年)_第4页
AI Agents如何重塑未来的工作(2024年)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Promptingforaction

HowAIagentsarereshapingthefutureofwork

Expandedcapabilities,usecasesandenterpriseimpactfromGenerativeAI

November2024

DeloitteAIInstitute

Promptingforaction|HowAIagentsarereshapingthefutureofwork

AbouttheDeloitteAIInstitute

TheDeloitteAIInstituteTMhelpsorganizationsconnectthedifferentdimensions

ofarobust,highlydynamicandrapidlyevolvingAIecosystem.TheInstituteleads

conversationsonappliedAIinnovationacrossindustries,withcutting-edgeinsights,topromotehuman-machinecollaborationinthe“AgeofWith.”

TheDeloitteAIInstituteaimstopromoteadialogueanddevelopmentofartificial

intelligence,stimulateinnovation,andexaminebothchallengestoAIimplementation

andwaystoaddressthem.TheInstitutecollaborateswithanecosystemcomposedof

academicresearchgroups,startups,entrepreneurs,innovators,matureAIproductleadersandAIvisionariestoexplorekeyareasofartificialintelligenceincludingrisks,policies,

ethics,futureofworkandtalent,andappliedAIusecases.CombinedwithDeloitte’sdeepknowledgeandexperienceinartificialintelligenceapplications,theInstitutehelpsmakesenseofthiscomplexecosystem,andasaresultdeliversimpactfulperspectivestohelporganizationssucceedbymakinginformedAIdecisions.

NomatterwhatstageoftheAIjourneyyou’rein,whetheryou’reaboardmemberora

C-suiteleaderdrivingstrategyforyourorganizationorahands-ondatascientistbringinganAIstrategytolife,theInstitutecanhelpyoulearnmoreabouthoworganizationsacrosstheworldareleveragingAIforacompetitiveadvantage.VisitusattheDeloitteAIInstitutetoaccessthefullbodyofourwork,subscribetoourpodcastsandnewsletter,andjoinusatourmeetupsandliveevents.Let’sexplorethefutureofAItogether.

/us/AIInstitute

2

Promptingforaction|HowAIagentsarereshapingthefutureofwork

Content

Keytakeaways

•AIagentsarereshapingindustriesbyexpandingthepotentialapplicationsofGenerativeAI(GenAI)andtypicallanguagemodels.

•MultiagentAIsystemscansignificantlyenhancethequalityofoutputsandcomplexityofworkperformedbysingleAIagents.

•Forward-thinkingbusinessesandgovernmentsarealreadyimplementingAIagentsandmultiagentAIsystemsacrossarangeofusecases.

•Executiveleadersshouldmakemovesnowtoprepareforandembracethisnexteraofintelligentorganizationaltransformation.

Introduction4

AIagents:5

Whatmakesthemdifferent—andwhytheymatter

MultiagentAIsystems:7

AmplifyingthepotentialofAIagents

KeybenefitsofAIagentsandmultiagentAIsystems:7

AdvantagesthatAIagentsareunlockingfororganizationstoday

Transformingstrategicinsights:8

Areal-worldexampleofamultiagentAIsystem

Achievingimpactthroughtargetedusecases:11

HowAIagentsarechangingindustriesandenterprisedomains

Enablingnewwaysofworkingandnewhorizonsofinnovation:13

Implicationsforstrategy,risk,talent,businessprocessesandtechnology

Theroadahead:15

WhatweexpectasAIagentscontinuetoevolve

Chartingacourseintothenexteraoforganizationaltransformation:16

Recommendedactionsforleaderstotakenow

Getintouch&Endnotes17

3

Promptingforaction|HowAIagentsarereshapingthefutureofwork

4

Introduction

Howcanweoperatefasterandmoreefficiently?

Thisquestionhasalwaysbeenattheforefrontofstrategic

agendas—butGenerativeAI(GenAI)ishelpingunlocknew

answers.Withitsabilitytoproducenoveloutputsfromplain-

languageprompts,GenAIhasenabledenterprisestosignificantlyenhancespeedandproductivityacrossarangeofbusinesstasks.However,usecasesfortypicallanguagemodelshaveonlyjust

beguntoshowGenAI’stransformativepotential.InthistimeofrapidAIevolution,it’stimetothinkbiggerandbolder:from

streamliningroutinetaskstoredesigningentireworkflows.

Nowthequestionforbusinessandgovernmentleadersisbecoming:

HowcanwerethinkourbusinessprocesseswithGenAI?

Largelanguagemodels(LLMs)andGenAI-poweredtoolsusedbymostorganizationstodayserveashelpfulassistants:Ahumanworkerentersaprompt,GenAIquicklyproducesanoutput.

However,thisinteractionislargelytransactionalandlimitedinscope.

WhatifGenAIcouldbemorelikeaskilledcollaboratorthatwillnotonlyrespondtorequestsbutalsoplanthewholeprocesstohelpsolveacomplexneed?WhatifGenAIcouldalsotapintothenecessarydata,digitaltoolsandcontextualknowledgetoorchestratetheprocessendtoend,autonomously?

Adaptorfallbehind

Attheendof2023,nearly1in6

surveyedbusinessleaderssaid

GenAIhadalreadytransformedtheirbusinesses1

ThisvisionisbecomingarealitywiththeemergenceofAIagentsandmultiagentAIsystems—apowerfuladvancementinwhat’spossiblethroughhuman-AIpartnership.LeadingcompaniesandgovernmentagenciesarealreadyseeingthevalueofAIagentsandputtingthemintopractice.

Inthispaper,weexplorewhatmakesAIagentssogroundbreaking.Wethenrevealhowtheyarereshapingindustries,including

governmentandpublicservices,byenablingnewusecases,

enhancingautomationandacceleratingthefutureofintelligentorganizationaltransformation.

Promptingforaction|HowAIagentsarereshapingthefutureofwork

AIagents:Whatmakesthemdifferent—andwhytheymatter

TograspthepotentialvalueofAIagentsandtheirrolein

expandingtheautomationhorizon,itisimportanttounderstandhowtheydifferfromthelanguagemodelsandGenAIapplicationsfamiliartobusinessleaderstoday.

AIagentsarereasoningenginesthatcanunderstandcontext,planworkflows,

connecttoexternaltoolsanddata,andexecuteactionstoachieveadefinedgoal.

WhilethismaysoundbroadlylikewhatstandaloneLLMsor

GenAIapplicationscando,therearekeydistinctionsthat

makeAIagentssignificantlymorepowerful.(Seetable,page6.)

TypicalLLM-poweredchatbots,forexample,usuallyhavelimitedabilitytounderstandmultistepprompts—muchlesstoplanandexecutewholeworkflowsfromasingleprompt.Inessence,they

conformtothe“input-output”paradigmoftraditionalapplicationsandcangetconfusedwhenpresentedwitharequestthatmust

bedeconstructedintomultiplesmallertasks.Theyalsostruggletoreasonoversequences,suchascompositionaltasksthatrequireconsiderationoftemporalandtextualcontexts.Theselimitationsareevenmorepronouncedwhenusingsmalllanguagemodels

(SLMs),which,becausetheyaretrainedonsmallervolumesofdata,typicallysacrificedepthofknowledgeand/orqualityofoutputsinfavorofimprovedcomputationalcostandspeed.

Asaresult,earlyGenAIusecaseshavemostlybeenlimitedtostandaloneapplicationssuchasgeneratingpersonalizedadsbasedonacustomer’ssearchhistory,reviewingcontractsandlegaldocumentstoidentifypotentialregulatoryconcerns,

orpredictingmolecularbehavioranddruginteractionsinpharmaceuticalresearch.

AIagentsexcelinaddressingtheselimitationswhilealso

leveragingcapabilitiesofdomain-andtask-specificdigitaltoolstocompletemorecomplicatedtaskseffectively.Forexample,

AIagentsequippedwithlong-termmemorycanremember

customerandconstituentinteractions—includingemails,chatsessionsandphonecalls—acrossdigitalchannels,continuouslylearningandadjustingpersonalizedrecommendations.This

contrastswithtypicalLLMsandSLMs,whichareoftenlimitedtosession-specificinformation.Moreover,AIagentscanautomateend-to-endprocesses,particularlythoserequiringsophisticatedreasoning,planningandexecution.

AIagentsareopeningnewpossibilitiestodriveenterprise

productivityandprogramdeliverythroughbusinessprocess

automation.UsecasesthatwereoncethoughttoocomplicatedforGenAIcannowbeenabledatscale—securelyandefficiently.

Inotherwords:AIagentsdon’tjustinteract.Theymoreeffectivelyreasonandactonbehalfoftheuser.

5

Promptingforaction|HowAIagentsarereshapingthefutureofwork

Anewparadigmfor

human-machinecollaboration

Throughtheirabilitytoreason,plan,rememberandact,

AIagentsaddresskeylimitationsoftypicallanguagemodels.

AIagents

Typicallanguagemodels

Automateentireworkflows/processes

Createandexecutemultistepplanstoachieveauser’sgoal,adjustingactionsbasedon

real-timefeedback

Utilizeshort-termandlong-termmemorytolearnfromprevioususerinteractionsand

providepersonalizedresponses;Memorymaybesharedacrossmultipleagentsinasystem

AugmentinherentlanguagemodelcapabilitieswithAPIsandtools(e.g.,dataextractors,imageselectors,searchAPIs)toperformtasks

Adjustdynamicallytonewinformationandreal-timeknowledgesources

Canleveragetask-specificcapabilities,knowledgeandmemorytovalidateandimprovetheirownoutputsandthoseofotheragentsinasystem

Usecasescope

Planning

Memory&fine-tuning

Tool

integration

Data

integration

Accuracy

Automatetasks

Arenotcapableofplanningororchestratingworkflows

Donotretainmemoryandhavelimitedfine-tuningcapabilities

Arenotinherentlydesignedtointegratewithexternaltoolsorsystems

Relyonstaticknowledgewithfixedtrainingcutoffdates

Typicallylackself-assessmentcapabilitiesandarelimitedtoprobabilisticreasoningbasedontrainingdata

6

Promptingforaction|HowAIagentsarereshapingthefutureofwork

7

MultiagentAIsystems:

AmplifyingthepotentialofAIagents

WhileindividualAIagentscanoffervaluableenhancements,the

trulytransformativepowerofAIagentscomeswhentheywork

togetherwithotheragents.Suchmultiagentsystemsleverage

specializedroles,enablingorganizationstoautomateandoptimizeprocessesthatindividualagentsmightstruggletohandlealone.

MultiagentAIsystemsemploy

multiple,role-specificAIagentsto

understandrequests,planworkflows,coordinaterole-specificagents,

streamlineactions,collaboratewithhumansandvalidateoutputs.

MultiagentAIsystemstypicallyinvolvestandard-taskagents(e.g.,userinterfaceanddatamanagementagents)workingwithspecialized-skilland-toolagents(e.g.,dataextractoror

imageinterpreteragents)toachieveagoalspecifiedbyauser.

AtthecoreofeveryAIagentisalanguagemodelthatprovides

asemanticunderstandingoflanguageandcontext—but

dependingontheusecase,thesameordifferentlanguagemodelsmaybeusedbyagentsinasystem.Thisapproachcanallowsomeagentstoshareknowledgewhileothersvalidateoutputsacross

thesystem—improvingqualityandconsistencyintheprocess.

Thatpotentialisfurtherenhancedbyprovidingagentswithsharedshort-andlong-termmemoryresourcesthatreducethe

needforhumanpromptingintheplanning,validationanditerationstagesofagivenprojectorusecase.

Thisconceptextendswhat’spossiblewithindividualAIagents

bytakingateamoragencyapproach.Bydecomposingadetailedprocessintomultipletasks,assigningtaskstoagentsoptimizedtoperformthetasks,andorchestratingagentandhuman

collaborationateachstageoftheworkflow,thistypeofsystemhasprovenmuchmorelikelytoproducehigherquality,fasterandmoretrustworthyoutcomes.2,3

Inotherwords:MultiagentAIsystemsdon’tjustreason

andactonbehalfoftheuser.Theycanorchestratecomplexworkflowsinamatterofminutes.

KeybenefitsofAIagents

andmultiagentAIsystems

Capability—AIagentscanautomateinteractionswithmultipletoolstoperformtasksthatstandalonelanguagemodelswerenotdesignedtoachieve(e.g.,browsinga

website,quantitativecalculations).

Productivity—WhereasstandaloneLLMsrequireconstanthumaninputandinteractiontoachievedesiredoutcomes,AIagentscanplanandcollaboratetoexecutecomplex

workflowsbasedonasingleprompt—significantlyspeedingthepathtodelivery.

Self-learning—Bytappingshort-andlong-termcontextualmemoryresourcesthatareoftenunavailableinapre-trainedlanguagemodel,AIagentscanrapidlyimprovetheiroutputqualityovertime.

Adaptability—Asneedschange,AIagentscanreasonandplannewapproaches,rapidlyreferencenewand

real-timedatasources,andengagewithotheragentstocoordinateandexecuteoutputs.

Accuracy—AkeyadvantageofmultiagentAIsystemsistheabilitytoemploy“validator”agentsthatinteractwith“creator”agentstotestandimprovequalityandreliabilityaspartofanautomatedworkflow.

Intelligence—Whenagentsspecializinginspecifictasks

worktogether—eachapplyingitsownmemorywhileutilizingitsowntoolsandreasoningcapabilities—newlevelsof

machine-poweredintelligencearemadepossible.

Transparency—MultiagentAIsystemsenhancetheabilitytoexplainAIoutputsbyshowcasinghowagentscommunicateandreasontogether,providingaclearerviewofthecollectivedecision-makingandconsensus-buildingprocess.

Promptingforaction|HowAIagentsarereshapingthefutureofwork

Transformingstrategicinsights

Nomattertheindustry,everyorganizationengagesinresearch,analysisandreporting—whetherabouteconomicconditions,customerandconstituentpreferences,policyandpricingstrategies,orothertopics.

Traditionally,theseprojectsrequireskilledhumananalyststoperformmultiplesteps,whichcanbetime-consuming,utilizingresearchandanalysistoolsalongwithin-housesubjectmatterexpertise.

Here’swhatatraditionalresearchprojecttypicallylookslike.

Analyst

Stakeholder

>

Analystidentifiestopicand

scope:Areportonthetop5

GenAItrendsinfinancialservices,basedonpubliclyavailabledatafromtheprior3months.

<>

AnalystAnalystselectssources,

searchesandcompiles

relevantinformation,and

organizesmaterialsandnotes.

Analyst

Analystsynthesizesthemes

andperspectives,outlinesa

planforthereportandsendstobusinessstakeholderforreview.

Analystdraftsthereportandsendstostakeholder,whoprovidesfeedback

anditerateswithanalyst.

Analystsendsapprovedreporttodesigner.

Analyst

StakeholderprovidesStakeholder

feedbackonoutline.

Analystordesignerresearchesimages,developsgraphicsanddesignsreport.

<>

<>

ProoferRisk&compliance

Analyst

orDesigner

Prooferreviewsreportand

providesfeedback,whichanalyst

and/ordesignerincorporate.

Risk&complianceprofessionalsareengagedasneeded.

Finalreportisdelivered.

Whileeffectiveandrepeatable,thisapproachis…

Time-consuming

Completingasinglereportcantakedaysorweeks,makingitdifficulttoseizeemergingopportunities.

8

Inefficient

Skilledanalystsmustperformmanyrepetitiveactivitiesthattaketheir

focusawayfromhigher-levelanalysis.

Difficulttoscale

Companiesandgovernmentagenciescanstruggletohireandretainenoughskilled,experiencedanalyststogrowtheirresearchcapacity.

Promptingforaction|HowAIagentsarereshapingthefutureofwork

“Pleasetellmeaboutyourrequest”

DeloittehasdevelopedamultiagentAIsystemthatcanstreamlineandimproveeachstepofresearchandreporting.Here’showitworks.

“IneedtowriteareportaboutGenAItrendsinmyindustry.”

<>

Analyst

User

interface

Analystandinterfaceagentdiscussanddefinereport

scope,sourcesandtimeframefordatacollection,targetindustryandaudience,etc.Throughthisprocess,theanalystdefinesthedeliverable:Areportonthetop5GenAItrendsinfinancialservices,basedonpubliclyavailabledatafromtheprior3months.

<>

<>

AIAGENTTYPES

Specialized-skill&-toolagents

Role-specificagents

thatexecutespecifictaskswithinthe

workflow

Allagentscanaccess…

•Languagemodels(sharedorseparate)

•Externaltools&datasourcesasneeded

•Sharedshort-andlong-termmemory

Standard-taskagent(s)

Oneormoreagents

thatperformtaskscommontoall

workflows

Planningagentbreaksthegoalinto

subprocesses,developsaworkflowandidentifiesnecessarytoolsandspecializedagentstoexecutetheworkflow.

File

management

MultimodalPlanning

processing

Web

browsing

Topic

modeling

Reportwriting

Promptexpanding

Data

sourcing

Content

summarization

Qualityassurance

Report

formatting

Data

visualizing

Imageselection

Data

structuring

Specializedagentsexpandprompts,conductresearch,compileandanalyzeresults,identifythemesanddraftthereportoutline.Asneeded,themultimodalprocessingagenttranslatesandinterpretsdatacollectedfromvisualandaudiosources.Oncetheoutlineisapproved/adjustedbytheanalyst,additionalspecializedagentsdraftanddesignthereportcompletewithcustomizedchartsandillustrations.

Throughouttheprocess,thequalityassuranceagentchecksforaccuracy,qualityandregulatory/brandcompliance,whilethedatamanagementagentensuressourcematerialsandreportiterationsare

documentedforreference/review.

<

Analystreviewsthereportandrequestschanges.Thesystemiteratesandrefinesthereport.

Analyst

>

Finalreportisdelivered.

Inadditiontobeingeffectiveandrepeatable,thisAIagent-poweredapproachis…

Highlyscalable

Inessence,thissystemprovidesaninstantlyavailableteamofskilleddigitalworkers.

9

Efficient

Skilledprofessionalscanfocuson

validating,iteratingandrefiningthereport.

Fast

Asingle,qualityreportcanbeproducedinlessthananhour.

Promptingforaction|HowAIagentsarereshapingthefutureofwork

Effectiveandefficientworkdependsoncreativityandknowledgeaugmentedbywell-plannedprocessesandtask-appropriatetools.

That’swhatAIagentsandmultiagentAIsystemscanbringtogether.

10

Promptingforaction|HowAIagentsarereshapingthefutureofwork

11

Achievingimpactthroughtargetedusecases

OrganizationsacrossindustriesandsectorsarealreadyleveragingthepotentialofAIagentsandmultiagentsystemstotransformprocesses,improveefficiency,andexpandimpact.Let’sexplorefourusecases

thatarepossibletoday—twoinspecificindustries,andtwothatcanbeappliedinanybusiness.

1USECASE

Individualizedfinancialadvisoryandwealthmanagement

INDUSTRY:Financialservices

Financialadvisoryservicesoftenhavereliedonbroad

categorizationsofcustomersbasedonage,incomeandrisk

tolerance.Thisapproachcanoftenmissthecomplexitiesof

individualfinancialsituationsandgoals.Intoday’srapidlychangingfinanciallandscape,thereisanincreasingdemandforpersonalized,adaptivefinancialadvice.MultiagentAIsystemscananalyzediversedatasources—includingthecustomer’sfinancialhistory,real-timemarketdata,lifeeventsandevenbehavioralpatterns—tohelp

adviserscreatefinancialplansandinvestmentstrategiestailoredforthespecificindividual.AIagentscanthencontinuouslymonitorandadjustrecommendationsascircumstanceschange.

POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:

Hyperpersonalization

Customizefinancialadvicetoeachcustomer’sspecificneedsandgoals,consideringfactorsthatothermethodsmightoverlook.

Continuousfine-tuning

Automaticallyupdatefinancialplansand

strategiesinresponsetochangesinmarketconditionsorpersonalcircumstances.

Improvedcustomersatisfaction

Strengthencustomerrelationshipsby

providingmorerelevantandtimelyadvice,leadingtohigherretentionandsatisfaction.

2USECASE

Dynamicpricingand

personalizedpromotions

INDUSTRY:Consumer

Standardpricingstrategiesofteninvolvestaticmodelsthatdonotaccountforreal-timemarketconditions,customerbehaviororinventorylevels.MultiagentAIsystemscanrapidlyintegrateanalysisbasedonvastamountsofreal-timedata—suchas

competitorpricing,customerpurchasehistoryandseasonaltrends—todynamicallyadjustprices.Additionally,theycan

personalizepromotionsbasedonindividualcustomer

preferences,attributesandshoppinghabitswiththegoalof

improvingconversionratesandelevatingcustomersatisfaction.

POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:

Fasteradaptation

Adjustpricesinstantlyinresponseto

marketchanges,inventorylevelsor

customerdemand—optimizingrevenue.

Personalizedoffers

Tailorpromotionstoeachcustomer’s

preferencesandbehavior,increasingthelikelihoodofpurchase.

Greaterprofitability

Maximizemarginsandminimizediscountingbyoptimizingpricingandpromotionsonanongoingbasis.

Enhancedscalability

Servealargernumberofcustomerswithhigh-quality,personalizedadvicewithoutraisingcoststodeliver.

Promptingforaction|HowAIagentsarereshapingthefutureofwork

12

3USECASE

TalentacquisitionandrecruitmentDOMAIN:Humanresources(HR)

Traditionalrecruitmentprocessesofteninvolvemanualresume

screening,repetitivecandidateassessmentsandsignificant

administrativework—whichcanleadtoinefficiencies.AIagents

canautomatetheend-to-endrecruitmentprocessbyusingnaturallanguageprocessingtoanalyzeresumes,assesscandidatesbasedonskillsandexperience,andconductinitialscreeninginterviewsviaGenAI-poweredavatars.Thesesystemscancollaboratewith

HRprofessionalstoensurethatqualifiedcandidatesareidentified,prioritizedandmovedthroughthehiringpipelineefficientlywhileadheringtorelevantregulations.

POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:

Increasedefficiency

AutomatetaskstoallowHRteams

tofocusonstrategicactivities,shorteningthetimetohire.

Improvedcandidatematching

Analyzeabroaderrangeofdatapointstohelpmatchcandidatestorolesmoreaccurately,

improvingthequalityofhires.

Reducedbias

Bystandardizingcandidateassessmentsand

focusingonskillsandexperience,AIagentscanhelpaddressunconsciousbiasintherecruitmentprocess.

4USECASE

Personalizedcustomersupport

DOMAIN:Customerandbeneficiaryservice

Traditionalcustomerandbeneficiarysupportsystemsoftenrelyonscriptedinteractions,whichcanfailtoresolvecomplexoruniqueinquiries—leadingtocustomerfrustrationandescalation.

Incontrast,multiagentAIsystemscanunderstandplain-languagerequestsandgeneraterelevantandnaturalresponsesthat

considerthecustomer’shistory,preferencesandreal-timecontext.Theseadvancedsystemscanhandlemanycomplexinquiries

effectively—reducingtheneedforescalationtoliveagentswhileimprovingcustomer/beneficiarysatisfaction.

POTENTIALADVANTAGESACHIEVEDWITHAIAGENTS:

Greaterconsistencyandscalability

AIagentscanoperate24/7withoutfatigue,maintainingaconsistentqualityofservicenomatterthevolumeofinquiries.

Improvedcustomerexperiences

Eachcustomerinteractioncanbeadjustedtoindividualneeds,improvingsatisfactionandengagement.

Compoundingefficiencies

Theabilitytolearnfromeachinteractioncanhelpreduceresponsetimes,improvequality,andfreeuphumanserviceagentstofocusonmorenuancedcustomerrequests.

Dynamicscalability

Handlelargevolumesofapplications,makingiteasiertomanagehiringcampaignsorrecruitformultiplerolessimultaneously.

Promptingforaction|HowAIagentsarereshapingthefutureofwork

Enablingnewwaysofworkingandnewhorizonsofinnovation

Aslanguagemodelscontinuetoevolve,AIagentsandsystemsarelikelytobecomestrategicresourcesandefficiencydriversforcorebusinessandgovernmentactivitiessuchasproductdevelopment,regulatorycompliance,customerservice,constituentengagement,organizationaldesignandothers.Weseeafutureinwhich

agentswilltransformfoundationalbusinessmodelsandentireindustries,enablingnewwaysofworking,operatinganddeliveringvalue.

That’swhyit’simportantforC-suiteandpublicserviceleaderstobeginpreparingnowforthisnextchapterintheevolutionofhuman-machinecollaborationandbusinessinnovation.

Let’sexploresomeofthenewwaysofthinkingandleadingthatshouldbeconsideredduringthistimeofrapidchange.

Strategyimplications

LeadersshouldbeginintegratingAIagentsandmultiagent

AIsystemsintotheiroverallstrategiesandfutureroadmaps.Thisinvolvesreimaginingbusinessprocesses,investinginAI

capabilities,andfosteringculturesofinnovation.OrganizationsshoulddeveloptheirownclearroadmapforAIagentadoption,identifyingkeyareaswheretheycandrivethemostvalueand

Riskimplications

AIagentsintroducenewrisksthatnecessitaterobustsecurity

andgovernancestructures.AsignificantriskispotentialbiasinAI

algorithmsandtrainingdata,whichcanleadtoinequitabledecisions.Additionally,AIagentscanbevulnerabletodatabreachesand

cyberattacks,compromisingsensitiveinformationanddataintegrity.ThecomplexityofAIsystemsalsopresentstheriskofunintended

consequencesduetoAIagentsbehavingunpredictablyormakingdecisionsnotalignedwithorganiz

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论