黑龙江龙江二中2025届高三(最后冲刺)数学试卷含解析2_第1页
黑龙江龙江二中2025届高三(最后冲刺)数学试卷含解析2_第2页
黑龙江龙江二中2025届高三(最后冲刺)数学试卷含解析2_第3页
黑龙江龙江二中2025届高三(最后冲刺)数学试卷含解析2_第4页
黑龙江龙江二中2025届高三(最后冲刺)数学试卷含解析2_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江龙江二中2025届高三(最后冲刺)数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在关于的不等式中,“”是“恒成立”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知函数,则方程的实数根的个数是()A. B. C. D.3.下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为()A. B.C. D.4.已知向量,,则向量与的夹角为()A. B. C. D.5.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.46.设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是()A. B. C. D.7.集合的子集的个数是()A.2 B.3 C.4 D.88.已知双曲线C:=1(a>0,b>0)的右焦点为F,过原点O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为()A. B. C.2 D.+19.若复数满足,其中为虚数单位,是的共轭复数,则复数()A. B. C.4 D.510.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则11.设,随机变量的分布列是01则当在内增大时,()A.减小,减小 B.减小,增大C.增大,减小 D.增大,增大12.已知展开式中第三项的二项式系数与第四项的二项式系数相等,,若,则的值为()A.1 B.-1 C.8l D.-81二、填空题:本题共4小题,每小题5分,共20分。13.已知各项均为正数的等比数列的前项积为,,(且),则__________.14.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,如图所示的框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分別为4,5,则输出的值为______.15.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________.16.已知函数,若函数有6个零点,则实数的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,a,b,c分别是角A,B,C的对边,并且.(1)已知_______________,计算的面积;请①,②,③这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求的最大值.18.(12分)已知函数是自然对数的底数.(1)若,讨论的单调性;(2)若有两个极值点,求的取值范围,并证明:.19.(12分)若不等式在时恒成立,则的取值范围是__________.20.(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.21.(12分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.22.(10分)已知集合,集合,.(1)求集合B;(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【详解】解:当时,,由开口向上,则恒成立;当恒成立时,若,则不恒成立,不符合题意,若时,要使得恒成立,则,即.所以“”是“恒成立”的充要条件.故选:C.【点睛】本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出是的充分条件;若,则推出是的必要条件.2、D【解析】

画出函数,将方程看作交点个数,运用图象判断根的个数.【详解】画出函数令有两解,则分别有3个,2个解,故方程的实数根的个数是3+2=5个故选:D【点睛】本题综合考查了函数的图象的运用,分类思想的运用,数学结合的思想判断方程的根,难度较大,属于中档题.3、C【解析】

将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角,,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.【点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.4、C【解析】

求出,进而可求,即能求出向量夹角.【详解】解:由题意知,.则所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式进行计算.5、C【解析】

由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6、A【解析】

依题意可得即可得到,从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.7、D【解析】

先确定集合中元素的个数,再得子集个数.【详解】由题意,有三个元素,其子集有8个.故选:D.【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.8、B【解析】

以为圆心,以为半径的圆的方程为,联立,可求出点,则,整理计算可得离心率.【详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,即,则,整理得,则(舍去),,.故选:B.【点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.9、D【解析】

根据复数的四则运算法则先求出复数z,再计算它的模长.【详解】解:复数z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故选D.【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题.10、D【解析】试题分析:,,故选D.考点:点线面的位置关系.11、C【解析】

,,判断其在内的单调性即可.【详解】解:根据题意在内递增,,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C.【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题.12、B【解析】

根据二项式系数的性质,可求得,再通过赋值求得以及结果即可.【详解】因为展开式中第三项的二项式系数与第四项的二项式系数相等,故可得,令,故可得,又因为,令,则,解得令,则.故选:B.【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用等比数列的性质求得,进而求得,再利用对数运算求得的值.【详解】由于,,所以,则,∴,,.故答案为:【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.14、1055【解析】

模拟执行程序框图中的程序,即可求得结果.【详解】模拟执行程序如下:,满足,,满足,,满足,,满足,,不满足,输出.故答案为:1055.【点睛】本题考查程序框图的模拟执行,属基础题.15、【解析】

根据程序框图得到程序功能,结合分段函数进行计算即可.【详解】解:程序的功能是计算,若输出的实数的值为,则当时,由得,当时,由,此时无解.故答案为:.【点睛】本题主要考查程序框图的识别和判断,理解程序功能是解决本题的关键,属于基础题.16、【解析】

由题意首先研究函数的性质,然后结合函数的性质数形结合得到关于a的不等式,求解不等式即可确定实数a的取值范围.【详解】当时,函数在区间上单调递增,很明显,且存在唯一的实数满足,当时,由对勾函数的性质可知函数在区间上单调递减,在区间上单调递增,结合复合函数的单调性可知函数在区间上单调递减,在区间上单调递增,且当时,,考查函数在区间上的性质,由二次函数的性质可知函数在区间上单调递减,在区间上单调递增,函数有6个零点,即方程有6个根,也就是有6个根,即与有6个不同交点,注意到函数关于直线对称,则函数关于直线对称,绘制函数的图像如图所示,观察可得:,即.综上可得,实数的取值范围是.故答案为.【点睛】本题主要考查分段函数的应用,复合函数的单调性,数形结合的数学思想,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)1【解析】

(1)选②,③.可得,结合,求得.即可;若选①,②.由可得由,求得.即可;若选①,③,可得,又,可得,即可;(2)化简,根据角的范围求最值即可.【详解】(1)若选②,③.,,,,又,.的面积.若选①,②.由可得,,,又,.的面积.若选①,③,,又,,可得,的面积.(2),当时,有最大值1.【点睛】本题考查了正余弦定理,三角三角恒等变形,考查了计算能力,属于中档题.18、(1)减区间是,增区间是;(2),证明见解析.【解析】

(1)当时,求得函数的导函数以及二阶导函数,由此求得的单调区间.(2)令求得,构造函数,利用导数求得的单调区间、极值和最值,结合有两个极值点,求得的取值范围.将代入列方程组,由证得.【详解】(1),,又,所以在单增,从而当时,递减,当时,递增.(2).令,令,则故在递增,在递减,所以.注意到当时,所以当时,有一个极值点,当时,有两个极值点,当时,没有极值点,综上因为是的两个极值点,所以不妨设,得,因为在递减,且,所以又所以【点睛】本小题主要考查利用导数研究函数的单调区间,考查利用导数研究函数的极值点,考查利用导数证明不等式,考查化归与转化的数学思想方法,属于难题.19、【解析】

原不等式等价于在恒成立,令,,求出在上的最小值后可得的取值范围.【详解】因为在时恒成立,故在恒成立.令,由可得.令,,则为上的增函数,故.故.故答案为:.【点睛】本题考查含参数的不等式的恒成立,对于此类问题,优先考虑参变分离,把恒成立问题转化为不含参数的新函数的最值问题,本题属于基础题.20、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【解析】

(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意恒成立即可.【详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,,,,,,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单调递增,.,在上单调递增,,即成立,即成立..【点睛】本题考查函数与导数的综合应用,涉及到函数单调性、极值、零点、不等式证明,构造函数函数是解题的关键,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.21、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由题意可得,,,解得即可求出椭

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论