版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市房山区房山中学高三第一次模拟考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在R上的函数y=fx满足fx≤2x-1A. B. C. D.2.函数f(x)=lnA. B. C. D.3.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.4.已知向量,,,若,则()A. B. C. D.5.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为()A.56383 B.57171 C.59189 D.612426.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10 B.9 C.8 D.77.已知,,且是的充分不必要条件,则的取值范围是()A. B. C. D.8.a为正实数,i为虚数单位,,则a=()A.2 B. C. D.19.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()A.1 B. C.3 D.410.“幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为()A.75 B.65 C.55 D.4511.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于;④方程表示的曲线C在第二象限和第四象限其中正确结论的序号是()A.①③ B.②④ C.①②③ D.②③④12.设抛物线上一点到轴的距离为,到直线的距离为,则的最小值为()A.2 B. C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知函数函数,其中,若函数恰有4个零点,则的取值范围是__________.14.已知i为虚数单位,复数,则=_______.15.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点A,B,C,D.若AB=BC,则实数t的值为_________.16.若椭圆:的一个焦点坐标为,则的长轴长为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知,分别是正方形边,的中点,与交于点,,都垂直于平面,且,,是线段上一动点.(1)当平面,求的值;(2)当是中点时,求四面体的体积.18.(12分)如图,在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的离心率为.且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若△AEF与△BDF的面积之比为1:7,求直线l的方程.19.(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,(1)证明:直线的斜率是-1;(2)若,,成等比数列,求直线的方程.20.(12分)如图,已知四棱锥,平面,底面为矩形,,为的中点,.(1)求线段的长.(2)若为线段上一点,且,求二面角的余弦值.21.(12分)已知函数,其中.(Ⅰ)若,求函数的单调区间;(Ⅱ)设.若在上恒成立,求实数的最大值.22.(10分)已知函数.(1)求证:当时,;(2)若对任意存在和使成立,求实数的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据y=fx+1为奇函数,得到函数关于1,0中心对称,排除AB,计算f1.5≤【详解】y=fx+1为奇函数,即fx+1=-f-x+1,函数关于f1.5≤2故选:D.【点睛】本题考查了函数图像的识别,确定函数关于1,0中心对称是解题的关键.2、C【解析】因为fx=lnx2-4x+4x-23=3、A【解析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.4、A【解析】
根据向量坐标运算求得,由平行关系构造方程可求得结果.【详解】,,解得:故选:【点睛】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则.5、C【解析】
根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前项和公式,可得结果.【详解】被5除余3且被7除余2的正整数构成首项为23,公差为的等差数列,记数列则令,解得.故该数列各项之和为.故选:C.【点睛】本题考查等差数列的应用,属基础题。6、B【解析】
根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值.【详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知所以因为为线段长度,都大于0,由基本不等式可知,此时所以选B【点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题.7、D【解析】
“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【详解】由题意知:可化简为,,所以中变量取值的集合是中变量取值集合的真子集,所以.【点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.8、B【解析】
,选B.9、A【解析】
采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥,长度如上图所以所以所以故选:A【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.10、B【解析】
计算的和,然后除以,得到“5阶幻方”的幻和.【详解】依题意“5阶幻方”的幻和为,故选B.【点睛】本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.11、B【解析】
利用基本不等式得,可判断②;和联立解得可判断①③;由图可判断④.【详解】,解得(当且仅当时取等号),则②正确;将和联立,解得,即圆与曲线C相切于点,,,,则①和③都错误;由,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.12、A【解析】
分析:题设的直线与抛物线是相离的,可以化成,其中是点到准线的距离,也就是到焦点的距离,这样我们从几何意义得到的最小值,从而得到的最小值.详解:由①得到,,故①无解,所以直线与抛物线是相离的.由,而为到准线的距离,故为到焦点的距离,从而的最小值为到直线的距离,故的最小值为,故选A.点睛:抛物线中与线段的长度相关的最值问题,可利用抛物线的几何性质把动线段的长度转化为到准线或焦点的距离来求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】∵,∴,∵函数y=f(x)−g(x)恰好有四个零点,∴方程f(x)−g(x)=0有四个解,即f(x)+f(2−x)−b=0有四个解,即函数y=f(x)+f(2−x)与y=b的图象有四个交点,,作函数y=f(x)+f(2−x)与y=b的图象如下,,结合图象可知,<b<2,故答案为.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.14、【解析】
先把复数进行化简,然后利用求模公式可得结果.【详解】.故答案为:.【点睛】本题主要考查复数模的求解,利用复数的运算把复数化为的形式是求解的关键,侧重考查数学运算的核心素养.15、【解析】
由是偶函数可得时恒有,根据该恒等式即可求得,,的值,从而得到,令,可解得,,三点的横坐标,根据可列关于的方程,解出即可.【详解】解:因为是偶函数,所以时恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因为,所以,即,解得,故答案为:.【点睛】本题考查函数奇偶性的性质及二次函数的图象、性质,考查学生的计算能力,属中档题.16、【解析】
由焦点坐标得从而可求出,继而得到椭圆的方程,即可求出长轴长.【详解】解:因为一个焦点坐标为,则,即,解得或由表示的是椭圆,则,所以,则椭圆方程为所以.故答案为:.【点睛】本题考查了椭圆的标准方程,考查了椭圆的几何意义.本题的易错点是忽略,从而未对的两个值进行取舍.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)【解析】
(1)利用线面垂直的性质得出,进而得出,利用相似三角形的性质,得出,从而得出的值;(2)利用线面垂直的判定定理得出平面,进而得出四面体的体积,计算出,,即可得出四面体的体积.【详解】(1)因为平面,平面,所以又因为,都垂直于平面,所以又,分别是正方形边,的中点,且,所以.(2)因为,分别是正方形边,的中点,所以又因为,都垂直于平面,平面,所以因为平面,所以平面所以,四面体的体积,所以.【点睛】本题主要考查了线面垂直的性质定理的应用,以及求棱锥的体积,属于中档题.18、(1)(2).【解析】
(1)利用离心率和椭圆经过的点建立方程组,求解即可.(2)把面积之比转化为纵坐标之间的关系,联立方程结合韦达定理可求.【详解】解:(1)设焦距为2c,由题意知:;解得,所以椭圆的方程为.(2)由(1)知:F(﹣1,0),设l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直线l的方程为.【点睛】本题主要考查椭圆方程的求解及椭圆中的面积问题,椭圆方程一般利用待定系数法,建立方程组进行求解,面积问题的合理转化是求解的关键,侧重考查数学运算的核心素养.19、(1)见解析;(2)【解析】
(1)设,,由已知,得,代入中即可;(2)利用抛物线的定义将转化为,再利用韦达定理计算.【详解】(1)在抛物线上,∴,设,,由题可知,,∴,∴,∴,∴,∴(2)由(1)问可设::,则,,,∴,∴,即(*),将直线与抛物线联立,可得:,所以,代入(*)式,可得满足,∴:.【点睛】本题考查直线与抛物线的位置关系的应用,在处理直线与抛物线位置关系的问题时,通常要涉及韦达定理来求解,本题查学生的运算求解能力,是一道中档题.20、(1)的长为4(2)【解析】
(1)分别以所在直线为轴,建立如图所示的空间直角坐标系,设,根据向量垂直关系计算得到答案.(2)计算平面的法向量为,为平面的一个法向量,再计算向量夹角得到答案.【详解】(1)分别以所在直线为轴,建立如图所示的空间直角坐标系.设,则,所以.,因为,所以,即,解得,所以的长为4.(2)因为,所以,又,故.设为平面的法向量,则即取,解得,所以为平面的一个法向量.显然,为平面的一个法向量,则,据图可知,二面角的余弦值为.【点睛】本题考查了立体几何中的线段长度,二面角,意在考查学生的计算能力和空间想象能力.21、(Ⅰ)单调递减区间为,单调递增区间为;(Ⅱ).【解析】
(Ⅰ)求出函数的定义域以及导数,利用导数可求出该函数的单调递增区间和单调递减区间;(Ⅱ)由题意可知在上恒成立,分和两种情况讨论,在时,构造函数,利用导数证明出在上恒成立;在时,经过分析得出,然后构造函数,利用导数证明出在上恒成立,由此得出,进而可得出实数的最大值.【详解】(Ⅰ)函数的定义域为.当时,.令,解得(舍去),.当时,,所以,函数在上单调递减;当时,,所以,函数在上单调递增.因此,函数的单调递减区间为,单调递增区间为;(Ⅱ)由题意,可知在上恒成立.(i)若,,,,构造函数,,则,,,.又,在上恒成立.所以,函数在上单调递增,当时,在上恒成立.(ii)若,构造函数,.,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中考英语一轮教材复习 八年级(上) Unit 1-1
- 高端数控机床智能制造产业基地项目可行性研究报告模板-备案拿地
- 医疗卫生机构管理信息系统建设可研报告
- 《编制投标文件》课件
- 《做个好娃娃》课件
- 曲线运动课件
- 《膨胀波与激波》课件
- 居民小区道路级配碎石铺设合同
- 《前置胎盘的护理》课件
- 建筑云计算工程合同范本
- 能源数字化转型典型实践案例集(2024年)
- DB3502∕T 139-2024“无陪护”医院服务规范通 用要求
- 山东师范大学成人教育《文献学》期末考试题库
- 2023年中老年市场白皮书
- GB/T 44312-2024巡检机器人集中监控系统技术要求
- 辽宁省名校联盟2024-2025学年高二上学期9月联合考试模拟练习数学试题
- 2023年法律职业资格《客观题卷一》真题及答案
- 敦煌莫高窟完整版本
- 2024年饲料合同范本
- 2024年人教版七年级英语(上册)期末考卷及答案(各版本)
- 农村民兵连指导员述职报告范本
评论
0/150
提交评论