版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
NISTCybersecurityWhitePaperNISTCSWP31
ProxyValidationandVerificationforCriticalAISystems
AProxyDesignProcess
PhillipLaplanteJoannaDeFranco
RickKuhnJeffVoas
ComputerSecurityDivision
InformationTechnologyLaboratory
MohamadKassab
EngineeringDivisionPennStateUniversity
Thispublicationisavailablefreeofchargefrom:
/10.6028/NIST.CSWP.31
September26,2024
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
Certaincommercialentities,equipment,ormaterialsmaybeidentifiedinthisdocumentinordertodescribeanexperimentalprocedureorconceptadequately.SuchidentificationisnotintendedtoimplyrecommendationorendorsementbytheNationalInstituteofStandardsandTechnology(NIST),norisitintendedtoimplythatthe
entities,materials,orequipmentarenecessarilythebestavailableforthepurpose.
NISTTechnicalSeriesPolicies
Copyright,Use,andLicensingStatements
NISTTechnicalSeriesPublicationIdentifierSyntax
PublicationHistory
ApprovedbytheNISTEditorialReviewBoardon2024-09-03
HowtoCitethisNISTTechnicalSeriesPublication:
LaplanteP,DeFrancoJ,KuhnR,VoasJ,KassabM(2023)ProxyValidationandVerificationforCriticalAISystems:AProxyDesignProcess.(NationalInstituteofStandardsandTechnology,Gaithersburg,MD),NISTCybersecurity
WhitePaper(CSWP)NISTCSWP31.
/10.6028/NIST.CSWP.31
AuthorORCIDiDs
PhillipLaplante:0000-0002-0415-271X
JoannaDeFranco:0000-0001-8966-5532
RickKuhn:0000-0003-0050-1596
JeffVoas:0000-0003-1139-3690
MohamadKassab:0000-0002-3647-8511
ContactInformation
cswp-31-comments@
NationalInstituteofStandardsandTechnology
Attn:ComputerSecurityDivision,InformationTechnologyLaboratory
100BureauDrive(MailStop8930)Gaithersburg,MD20899-8930
AdditionalInformation
Additionalinformationaboutthispublicationisavailableat
/publications/cswp,
includingrelatedcontent,potentialupdates,anddocumenthistory.
AllcommentsaresubjecttoreleaseundertheFreedomofInformationAct(FOIA).
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
i
Abstract
Thiswhitepaperdescribesafive-phaseprocessthatincludesidentifyingorbuildingproxy
systemsthathavehighsimilaritytoacriticalAIsystem(CAIS),representingakindofvalidation,andverifyingtheproxybycreatingandtestingbothuseandmisusecasesofeachproxyagainstitsCAIS.
Keywords
artificialintelligence;criticalsystems;criticalAIsystem;validationandverificationtesting.
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
ii
TableofContents
ExecutiveSummary 1
1.Introduction 2
11.Bahground2
2.CAISValidationandVerificationProcess—5phases 3
2.2.1.PhysicalOperationalEnvironment 5
2.2.2.ApplicationPurpose 5
2.2.3.OperationalCharacteristics 6
2.2.4.AI/MLDevelopmentAlgorithms 6
2.2.5.AI/MLDevelopmentTechniques 7
2.2.6.CAISandProxyTaxonomyTemplate 7
23.phase3:CAS/proxysimilarityTesting.………….8
2.A.phase4:MiusecasesforFurtherTesting……………9
25.phasespTOXYMissecGaseTesting…………10
References 11
AppendixA.Glossary 12
ListofTables
Table1.ExampleCAIStemplateuse 7
Table2.Examplematchingproxies 8
Table3.Misusecaseandcriticalitylevelfortherobotweedkiller 10
ListofFigures
Fig.1.The5phasesoftheCAISvalidationandverificationprocess 3
Fig.2.CAIStaxonomyproposedin[1] 5
Fig.3.CAIS/Proxysimilaritytesting 9
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
1
ExecutiveSummary
Thiswhitepapersuggeststhatpriortestingartifactsfromsimilarartificialintelligence(AI)systemscanbereusedfornewAIsoftware.TestingAIandmachinelearningsoftwareis
difficult,andapplyingpriortestingresultsfromsimilarsystemsasaproxywouldbeasignificantresearchadvance.
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
2
1.Introduction
ThegoalofthisworkistoincreasetrustincriticalAIsystems(CAISs)throughproxyverification
andvalidation.InaCAIS,executingcertaintestcasesisnotalwayspossible,suchaswhenatestcasecouldexposetestersandthepublictosignificantharm,whenanoperationalprofileis
extremelydifficultorimpossibletoarrange,orwhenthecostsofsuchtestingareprohibitivelyhighforanextremelylowlikelihoodscenario.Inthesesituations,itmaybeappropriatetouseanon-criticalequivalentorproxysystemtomodeltheextremecasesinawaythatimbues
confidenceinthescenarios
[1].
Toaddressthisneed,thisworkdescribesafive-phaseprocessthatincludesidentifyingor
buildingproxysystemsthathavehighsimilaritytoaCAIS,representingakindofvalidationandverification(V&V)oftheproxybycreatingandtestingbothuseandmisusecasesofeachproxyagainstitsCAIS.ThisnotionofV&Vresultsfrom“similar”systemstoadifferentsystemisnovel.Thekeytosuccessistheabilitytodemonstrateandmeasure“similarity.”
Insomerespects,thisframeworkissimilartotheproblemoftransferlearning,whereamodeltrainedononedatasetforaparticularenvironmentisusedinadifferentenvironmentorwhenitsuseenvironmentchanges.AnotabledifferencebetweenproxyV&VandtransferlearningisthatboththemodelandtheenvironmentmaydifferintheproxyV&Vcase.Bothframeworks
sharetheneedformeasuresofsimilarity,andsuchmeasureshavebeenthesubjectofresearchintransferlearning
[2].
Statisticalandothermeasuresfromtransferlearningcanbeusedto
quantifysimilaritiesanddifferencesbetweendatasetsthatcontainexamplesofelementsin
theenvironmentwithvaluesassignedtoattributes.Measurescanbeusedtoquantifythe
degreetowhichexamplesinoneclassorcategorydifferfromexamplesinanotherclass,suchasthepresenceorabsenceofvaluesandthemagnitudeofattributevaluedifferencesbetweentwoormoreclasses.SuchmeasurescouldbeadaptedtotheproxyV&Vproblemtocompute
similaritiesbetweendifferentmodelsandtheiruseenvironments.
1.1.Background
NISTSpecialPublication(SP)800-37r2(Revision2),RiskManagementFrameworkfor
InformationSystemsandOrganizations:ASystemLifeCycleApproachforSecurityandPrivacy
[3],
describesaprocessthatintegratestrustworthinesscharacteristics(e.g.,security,privacy);emphasizescontinualtest,evaluation,verification,andvalidation(TEVV);andpromotescybersupplychainriskmanagementacrossthelifecyclesofAIsystems.Systemrequirements
validationandtestingareimportantaspectsofanydevelopmentlifecyclemodel,particularlyforcriticalinfrastructuresystems.Theprocessesdescribedhereinareintendedtosupportand
augmentothervalidationandtestingprocessesthatalignwiththeRiskManagementFramework.
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
3
2.CAISValidationandVerificationProcess—5phases
Thefive-phaseprocessin
Fig.1
showsthevalidationprocess
[4]
todeterminerisk(Phase1)andidentifyaproxy(Phase2),verifytheproxybyanalyzingsimilaritiesintheproxysystem(Phase3),createmisusecasesandcategorizerisk(Phase4),andtestthemisusecases(Phase5).
Phases1and2areadaptedfrom
[4].
IDProxySystems
VerifySimilarity
CreateMisusecases
TestMisusecases
AssessCAISRisk
Fig.1.The5phasesoftheCAISvalidationandverificationprocess
2.1.Phase1:AssessCAISRiskLevel
TheU.S.CybersecurityInfrastructureandSecurityAgency(CISA)defines16critical
infrastructuresectorsinwhichdestructionwouldhavea“debilitatingeffectonsecurity,
nationaleconomicsecurity,nationalpublichealthorsafety,oranycombinationthereof”
[5].
Thus,systemsthatfallunderthe16sectorscouldbeconsideredcriticalsystems.
CriticalInfrastructureSectors
1.Chemical:Basicchemicals,specialtychemicals,agriculturalchemicals,andconsumerproducts
2.Commercialfacilities:Entertainment/media,gaming,lodging,outdoorevents,publicassembly,realestate,retail,andsportsleagues
3.Communications:Providersofvoiceservicesusinginterconnectedterrestrial,satellite,andwirelesstransmissionsystems
4.Criticalmanufacturing:Metals;machinery;electricalequipment,appliances,andcomponents;andtransportationequipment
5.Dams:Criticalwaterretentionandcontrolservices
6.Defenseindustrialbase:Research,development,production,delivery,andmaintenanceofmilitaryweaponssystems,subsystems,andcomponentsorpartstomeetU.S.militaryrequirements
7.Emergencyservices:Highlyskilledandtrainedpersonnelandphysicalandcyber
resourcesthatprovideprevention,preparedness,response,andrecoveryservicesduringday-to-dayoperationsandincidentresponse
8.Energy:Electricity,oil,andnaturalgas
9.Financialservices:Depositoryinstitutions,providersofinvestmentproducts,insurancecompanies,othercreditandfinancialorganizations,andprovidersofcriticalfinancialutilitiesandservicesthatsupportthesefunctions
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
4
10.Foodandagriculture:Farms,restaurants,registeredfoodmanufacturing,processing,andstoragefacilities
11.Governmentfacilities:Officebuildings,militaryinstallations,nationallaboratories,courthouses
12.Healthcareandpublichealth:Protectionfromterrorism,infectiousdiseaseoutbreaks,andnaturaldisasters
13.Informationtechnology:Providersofcomputingservices,network,anddatastoragefacilities
14.Nuclearreactors,materials,waste:Activepowerreactors,researchandtestreactors,nuclearfuelcyclefacilities,andotherradioactivesourcesusedformedicaldiagnosticsandtreatment
15.Transportationsystems:Aviation,highwayandmotorcarriers,maritimetransportation,masstransit/passengerrail,pipelinesystems,freightrail,postal,andshipping
16.Waterandwastewater:Wells,reservoirs,watertreatmentfacilities,andwaterdistributioninfrastructure
Eachofthesesectorsmayfurtherclassifysystemsundertheirdomaintocreateriskcategories
thatreflectthelevelofAIintegration.Forexample,levelsofAIintegrationinahealthcaresystemcouldbeconsideredassistive,augmentative,orautonomous.
1
Anautonomous
healthcaresystemwouldbeconsideredaCAIS.
OnceasystemisclassifiedasaCAIS,ametaphoricallyequivalentsystem(orproxy)mustbe
identified.ThegoaloftheproxyistohavethefunctionalequivalenceoftheCAIStoenablesafetesting.Forexample,anautonomousvehiclemayhavearobotvacuumasatestingproxyifit
hassignificantoperationalandimplementationsimilarities.Itisunlikelythattheproxy
coverageoftheCAISwillbecomplete,butthisdoesnotnegatethevalueofproxytesting.ThegoaloftheproxyistocoverthosefeaturesthatcannotbedirectlytestedintheCAIS.Whethersomethingisagoodproxymayalsobehighlydependentonimplementation.
Aproxysystemmayhavedomainequivalence(e.g.,boththeCAISandproxysystemmaybe
spacesystems),butdomainequivalenceisnotaprerequisiteforproxyvalidationandverification.
TheimputationoftheproxytestresultstotheCAISsubstantiallydependsonselectingtheappropriatesetofsystemfeatures.ThefunctionalequivalenceisdeterminedbyafeatureextractionprocessusingthetaxonomydescribedinPhase2.
2.2.Phase2:SystemEvaluationtoFindProxyEquivalents
AnexampletaxonomyforCAISsisproposedin
[1].
ThetaxonomyisusedtomatchtheCAIS’scharacteristicstoatestingproxy(i.e.,non-criticalprototypeordigitaltwin).Thistaxonomy
assessesthefunctionalequivalenceofthetestingproxy.As
Fig.2
illustrates,theproposedCAIS
1Formoreinformation,see
.
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
5
taxonomyincludesthefollowingfivedimensions:physicaloperationalenvironment,AI
applicationpurpose,operationalcharacteristics,artificialintelligence/machinelearning(AI/ML)technologies,andAI/MLtechniques.
AI/ML
Development
Algorithms
AI/ML
DevelopmentTechniques
AIApplicationPurpose
OperationalCharacteristics
Physical
OperationalEnvironment
Fig.2.CAIStaxonomyproposedin
[1]
2.2.1.PhysicalOperationalEnvironment
Physicalenvironmentsrefertobothnaturalenvironments(e.g.,lakes,oceans,forests)and
human-createdenvironments(e.g.,offices,factories,schools),whichcanaffectthequalityoflifeforbothpeopleandsystems.Operationalenvironments(OEs)generallyincludeair,space,andsubsurfaceterrains(e.g.,maritime,oceanography,hydrology).CyberspaceshouldalsobeconsideredanOEgivenhowdatacantravelthroughthephysicalworld.
2.2.2.ApplicationPurpose
Determininganapplication’spurposehelpstoidentifyproxycharacteristics.Ingeneral,anAIapplicationisdesignedandbuiltbasedoncertaincharacteristics,sometimesreferredtoas
“designforX”orDfX,whereXstandsforexcellenceorforaqualityrequirement(e.g.,
testability,reliability,etc.).DesigningthiswayensuresthatthemostimportantcharacteristicsofaCAISarereflectedinthefinaldesignoftheproxy.
Systemcharacteristicscanbeanalyzedbyreviewingitsdomainandgoals,suchasdetermining
whetherasystemdomainisintheareaofcommunication,learning,planning,reasoning,orprovidingaservice.OverallAIgoalscanthenbeidentified,suchaslanguageprocessing,
computervision,deeplearning,datascience,ormachinelearning.Thisanalysisinformsthenextphaseofdeterminingoperationalcharacteristics.Forexample,ifagoalofaCAISistooperateautonomously,theproxymustalsobethesametypeofautonomoussystem.
Definitionsforthecharacteristicsshouldbeconsistent.Forexample,inNISTSpecialPublication(SP)1011-I-2-0,theDoDdefinedanautonomousvehicletohavelevelswith“nohuman
operatoraboardtheprincipalcomponents,whichactsinthephysicalworldtoaccomplish
assignedtasks.Itmaybemobileorstationary.Itcanincludeanyandallassociatedsupporting
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
6
componentssuchasoperatedcontrolunits(OCU)s”
[6].
Theyalsoofferedexamples,suchasunmannedgroundvehicles(UGV),unmannedaerialvehicles/systems(UAV/UAS),unmannedmaritimevehicles(UMV)(e.g.,unmannedunderwatervehicles[UUV]orunmannedwater
servicebornevehicles[USV]),unattendedmunitions(UM),andunattendedgroundsensors(UGS).Missiles,rockets,submunitions,andartilleryarenotconsideredtheprincipal
componentsofunmannedsystems
[6].
Asanotherexample,SAEJ3016,“Taxonomyand
DefinitionsforTermsRelatedtoDrivingAutomationSystemsforOn-RoadMotorVehicles”
[7],
describesfivedifferentlevelsofautonomyforautonomousvehicles.
Afterdefiningthetypeofautonomousvehicle,itshouldbedeterminedwhetherthesystemisfullyorsemi-autonomous.Semi-autonomousisdefinedasanunmannedsystemthatiscapableofautonomousoperationbetweenhumaninteractions
[8].
2.2.3.OperationalCharacteristics
Operationalcharacteristicsrepresentpotentialbehaviorsandeffectsonthesystem,andmatchingthemisvitalforproxyaccuracy.Therearemanypossiblewaystoorganizeandstandardizethesecharacteristics,suchas:
1.O1.Moving/stationary[no=0/yes=1]
2.O2.Mission:Navigation,targetacquisition,targetattack,gatheringsomething,deliveringsomething/payload(e.g.,gas,water,packages)[canbe>1ofthese;b1b2b3b4b5,wherebi=1ifthedomainapplies]
3.O3.Financialconsequences[onascaleof0-9,where0representsnofinancialconsequencesand9representscatastrophicfinancialconsequences]
4.O4.Socialconsequences[onascaleof0-9,where0representsnosocialconsequencesand9representscatastrophicsocialconsequences(e.g.,privacy,elections,
compliance/law)]
5.O5.Humanrisk[onascaleof0-9,where0representsnohumanriskand9representscatastrophichumanrisk(e.g.,totheoperator,user,passenger)]
2.2.4.AI/MLDevelopmentAlgorithms
TheNISTAIGlossary
[9]
definesAIas:
…aninterdisciplinaryfield,usuallyregardedasabranchofcomputerscience,dealingwithmodelsandsystemsfortheperformanceoffunctionsgenerallyassociatedwithhumanintelligence,suchas reasoningandlearning.
ThatsameglossarydefinesMLas“ageneralapproachfordeterminingmodelsfromdata”
[9].
CAISalgorithms—whetherAI,ML,ordeeplearning—dependontheapplication,andproxyAI/MLalgorithmsshouldmatchthealgorithmsofaCAISandthelearningtype(i.e.,supervised
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
7
versusunsupervised).ExamplealgorithmsincludeNaïveBayesestimation,linearregression,principalcomponentanalysis,anddecisiontrees.
AnimportantconsiderationwhenselectingaproxyistheavailabilityandequivalencyofthetrainingdatasetsforMLalgorithms.ConfidenceintheresultsofanyMLalgorithmtestingoftheproxysystemdependsontheequivalencyofthatdatasettotheCAIS.Insomecases,thisequivalencymaybeimpossibletoachieve.
2.2.5.AI/MLDevelopmentTechniques
ThetechniquesusedtodevelopmatchingproxiesforaCAISshouldalsobeconsideredsince
testingcouldcapturesideeffectsandunintendedbehaviorsinducedbythesetechniques.
Developmentconsiderationsincludetheprogramminglanguagesused(e.g.,C++,Python,etc.),developmentenvironments,andsoftwaredevelopmentprocesses.
.FlexibilityoftheProposedTaxonomy
Sections
2.2.1
through
2.2.5
representagenericstructureforaproposedCAIStaxonomy.Itisastartingpointtoidentifyanduseproxysystemsfortesting,andlong-termuseandnegotiationwillrefineandimprovethetaxonomy.Differentdomains(e.g.,aerospace,medical,power
generationanddistribution)mayfurtherrefineandevolvespecifictaxonomiesanddimensionsofevaluation.Furthermore,thegranularityoftheLikertscalesisarbitrary.Forexample,ascaleof0-99oranothercouldbeusedforanyofthefactors.
2.2.6.CAISandProxyTaxonomyTemplate
Thetemplateshownin
Table1
canbeusedtodeterminethedistinguishingfeaturesofaCAISanditsproxies.
Table1
demonstratestheCAIStaxonomywithanautonomousvehiclethatisgiventheconsequencesoftherisksofoperationalfailure.Thegoalistotestthenavigation
system’sobstacleavoidancealgorithm.
Table1.ExampleCAIStemplateuse
Phy.Op.Envmt.
AIApp.Purpose
Operational
Charac.
Dev.
Algorithm
Dev.Tech.
AutonomousVehicle
Land
Reasoning,learning,
planning,services
O1:1;02:11111;
O3:0;
O4:9;05:9
KMP
Algorithm
Java
Table2
showstwoproxysystemsanalyzedusingtheCAIStaxonomy:arobotweedkillerandarobotvacuum.ThevalidationofsimilarityoftheCAISandproxymatchwilloccurinPhase3.
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
8
Table2.Examplematchingproxies
Phy.Op.Envmt.
AIApp.Purpose
Operational
Charac.
Dev.
Algorithm
Dev.Tech.
RobotWeedKiller
Land
Reasoning,learning,
planning,services
O1:1;02:11111;
O3:0;
O4:0;05:9
KMP
Algorithm
Java
RobotVacuum
Land
Reasoning,learning,
planning,services
O1:1;02:11111;
O3:0;
O4:0;05:9
KMP
Algorithm
Java
2.3.Phase3:CAIS/ProxySimilarityTesting
TestingoccursinbothPhase3andPhase5oftheCAISProxyValidationprocess,wherePhase3
focusesonsimilaritytestingandPhase5focusesonmisusecasetesting.Thisprocessis
describedindetailin
[1].
IfthesimilaritytestingissuccessfulinPhase3,misusecasesarecreatedinPhase4toultimatelybetestedinPhase5.
Forexample,multipleproxiesfortheautonomousvehiclewerecreatedinPhase2.Eachproxyhasincreasinglevelsofcriticalityandfunctionalityforanautonomousvehicle—robotvacuum(level1)robotweedkiller(level2)robotlawnmower(level3)autonomousvehicle
(level4)—inthat,
•Theyallusesimilarnavigationsystemalgorithms.
•Theyallusesimilarobstacleavoidancealgorithms.
•Eachproxycanhavemultiplefailureusecasesatvariouslevelsofcriticality.
Therefore,inPhase3,appropriateusecasescenariosofeachproxyaretestedagainsteach
otherandagainsttheCAIStovalidatethematchingprocess
(Fig.3)
.Inotherwords,usingtheseproxyexamplesfromPhase2,therobotvacuumwouldbetestedagainsttherobotweedkillerandthenagainsttheautonomousvehicletovalidatethedimensionsclaimedinPhase2.
CAIS
Proxy2
Proxy1
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
9
Fig.3.CAIS/Proxysimilaritytesting
2.4.Phase4:MisuseCasesforFurtherTesting
Writemisusecasesforeachproxyusingcriticalityanalysis.TheprocessisbasedonInteragencyReport(IR)8179,CriticalityAnalysisProcessModel:PrioritizingSystemsandComponents
[8].
AlthoughCAPisintendedforinformationassetriskanalysisandmanagement,themodel
providesanapproachtoanalyzingandunderstandingessentialsystems,subsystems,
components,subcomponents,andtheiroperatingenvironments.Specifically,thisapproachwillbeusedbyfollowingtwosteps:
1.Determinethemisusecasesofaproxy:UsetheCAPprocesstodeterminewhatcangowrongduringaproxy’soperation.Inthisstep,analyzeworkflows,dependencies,
boundaries,interactions,intersections,connections,constraints,andtriggersofthesystemanditscomponents.
2.Categorizethemisusecaseswithincreasinglevelsofrisk:
CAIS1proxy1misusecase1-N,whereeachusecasehasanincreasinglevelofrisk
CAIS1proxy2misusecase1-N,whereeachusecasehasanincreasinglevelofriskExample(resultsshownin
Table3)
:
Robotweedkiller—aproxyforanautonomousvehicle:
1.Determinethemisusecases:
a.Definetheworkflowpaths,dependences,andboundaries.Identifythe
interactions,intersections,connections,dependencies,constraints,andtriggersofthesystemanditscomponents(e.g.,GPS,ML,othersensorsthatcouldfail,
weather,etc.).Example:
Dependencies:Sensors,GPS,MLdatasetConstraints:Weather
Trigger:Identifyandavoidobstacles,andsprayweeds.
b.Determinedysfunctionalstates(misusecases),suchasbrokensensors,maliciousentities,downtime,slowoperatingspeeds,ormisidentifiedobstacles.
Questionstoask(resultsshownin
Table3)
:
i.Whatwillhappentothefunctions/capabilitiesdeliveredbythe
subsystemwhencomponentsorsubcomponentsfailandresultinanadverseoperatingstate?
ii.Whatwilltheimpactonsubsystemoperationsbe?
iii.Whichofthecomponentsaremostimportantforthesubsystemtocontinueoperating?
NISTCSWP31ProxyValidationandVerification
September2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市股权转让协议
- 农村集体土地租赁合同范本
- 店面房租租赁合同
- 独家经销产品协议范本
- 2025年全球及中国高压试验台行业头部企业市场占有率及排名调研报告
- 2025年全球及中国微光显微镜(EMMI)行业头部企业市场占有率及排名调研报告
- 2025-2030全球无机瓷釉涂料行业调研及趋势分析报告
- 2024年度河南省国家保安员资格考试通关考试题库带答案解析
- 二零二四微商区域代理商权益保护合同3篇
- 23年-24年项目安全培训考试题带答案(巩固)
- 人教版数学四年级下册核心素养目标全册教学设计
- JJG 692-2010无创自动测量血压计
- 三年级下册口算天天100题(A4打印版)
- 徐州市2023-2024学年八年级上学期期末地理试卷(含答案解析)
- CSSD职业暴露与防护
- 饮料对人体的危害1
- 数字经济学导论-全套课件
- 移动商务内容运营(吴洪贵)项目三 移动商务运营内容的策划和生产
- 中考记叙文阅读
- 产科沟通模板
- 2023-2024学年四川省成都市小学数学一年级下册期末提升试题
评论
0/150
提交评论