常用半导体器件_第1页
常用半导体器件_第2页
常用半导体器件_第3页
常用半导体器件_第4页
常用半导体器件_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章常用半导体器件第一章

常用半导体器件§1.1半导体基础知识§1.2半导体二极管§1.3晶体三极管§1.4场效应管§1半导体基础知识一、本征半导体二、杂质半导体三、PN结的形成及其单向导电性四、PN结的电容效应一、本征半导体导电性介于导体与绝缘体之间的物质称为半导体。本征半导体是纯净的晶体结构的半导体。1、什么是半导体?什么是本征半导体?导体--铁、铝、铜等金属元素等低价元素,其最外层电子在外电场作用下很容易产生定向移动,形成电流。绝缘体--惰性气体、橡胶等,其原子的最外层电子受原子核的束缚力很强,只有在外电场强到相当程度时才可能导电。半导体--硅(Si)、锗(Ge),均为四价元素,它们原子的最外层电子受原子核的束缚力介于导体与绝缘体之间。无杂质稳定的结构2、本征半导体的结构由于热运动,具有足够能量的价电子挣脱共价键的束缚而成为自由电子自由电子的游离使共价键中留有一个空位置,称为空穴

自由电子与空穴相碰同时消失,称为复合。共价键一定温度下,自由电子与空穴对的浓度一定;温度升高,热运动加剧,挣脱共价键的电子增多,自由电子与空穴对的浓度加大。动态平衡两种载流子

外加电场时,带负电的自由电子和带正电的空穴均参与导电,且运动方向相反。由于载流子数目很少,故本征半导体导电性很差。为什么要将半导体变成导电性很差的本征半导体?3、本征半导体中的两种载流子运载电荷的粒子称为载流子。温度升高,热运动加剧,载流子浓度增大,导电性增强。热力学温度0K时不导电。二、杂质半导体

1.N型半导体磷(P)

杂质半导体主要靠多数载流子导电。掺入杂质越多,多子浓度越高,导电性越强,实现导电性可控。多数载流子空穴比未加杂质时的数目多了?少了?为什么?2.P型半导体硼(B)多数载流子

P型半导体主要靠空穴导电,掺入杂质越多,空穴浓度越高,导电性越强,

在杂质半导体中,温度变化时,载流子的数目变化吗?少子与多子变化的数目相同吗?少子与多子浓度的变化相同吗?三、PN结的形成及其单向导电性

物质因浓度差而产生的运动称为扩散运动。气体、液体、固体均有之。扩散运动P区空穴浓度远高于N区。N区自由电子浓度远高于P区。扩散运动使靠近接触面P区的空穴浓度降低、靠近接触面N区的自由电子浓度降低,产生内电场。PN结的形成

因电场作用所产生的运动称为漂移运动。

参与扩散运动和漂移运动的载流子数目相同,达到动态平衡,就形成了PN结。漂移运动

由于扩散运动使P区与N区的交界面缺少多数载流子,形成内电场,从而阻止扩散运动的进行。内电场使空穴从N区向P区、自由电子从P区向N区运动。PN结加正向电压导通:耗尽层变窄,扩散运动加剧,由于外电源的作用,形成扩散电流,PN结处于导通状态。PN结加反向电压截止:耗尽层变宽,阻止扩散运动,有利于漂移运动,形成漂移电流。由于电流很小,故可近似认为其截止(不导通)。PN结的单向导电性必要吗?IS:反向饱和电流UT:温度的电压当量在常温(300K)下,

UT

26mVPN结的电流方程PN结所加端电压u与流过的电流i的关系为公式推导过程见第3版PN结的伏安特性i=f

(u

)之间的关系曲线。604020–0.002–0.00400.51.0–25–50i/mAu/V正向特性击穿电压U(BR)反向特性图1.1.8

PN结的伏安特性反向击穿齐纳击穿雪崩击穿四、PN结的电容效应当PN上的电压发生变化时,PN结中储存的电荷量将随之发生变化,使PN结具有电容效应。电容效应包括两部分势垒电容扩散电容1.势垒电容Cb是由PN结的空间电荷区变化形成的。(a)PN结加正向电压(b)PN结加反向电压-N空间电荷区PVRI+UN空间电荷区PRI+-UV空间电荷区的正负离子数目发生变化,如同电容的放电和充电过程。势垒电容的大小可用下式表示:由于PN结宽度l随外加电压u而变化,因此势垒电容Cb不是一个常数。其Cb=f(U)

曲线如图示。

:半导体材料的介电比系数;S:结面积;l:耗尽层宽度。OuCb图1.1.9(b)2.扩散电容Cd

Q是由多数载流子在扩散过程中积累而引起的。在某个正向电压下,P区中的电子浓度np(或N区的空穴浓度pn)分布曲线如图中曲线1所示。x=0处为P与耗尽层的交界处当电压加大,np

(或pn)会升高,如曲线2所示(反之浓度会降低)。OxnPQ12

Q当加反向电压时,扩散运动被削弱,扩散电容的作用可忽略。

Q正向电压变化时,变化载流子积累电荷量发生变化,相当于电容器充电和放电的过程——扩散电容效应。PNPN结综上所述:PN结总的结电容Cj

包括势垒电容Cb

和扩散电容Cd

两部分。Cb

和Cd

值都很小,通常为几个皮法~几十皮法,有些结面积大的二极管可达几百皮法。当反向偏置时,势垒电容起主要作用,可以认为Cj

Cb。一般来说,当二极管正向偏置时,扩散电容起主要作用,即可以认为Cj

Cd;在信号频率较高时,须考虑结电容的作用。结电容:问题为什么将自然界导电性能中等的半导体材料制成本征半导体,导电性能极差,又将其掺杂,改善导电性能?为什么半导体器件的温度稳定性差?是多子还是少子是影响温度稳定性的主要因素?为什么半导体器件有最高工作频率?§2半导体二极管一、二极管的组成二、二极管的伏安特性及电流方程三、二极管的等效电路四、二极管的主要参数五、稳压二极管六、其它类型二极管

一、二极管的组成将PN结封装,引出两个电极,就构成了二极管。小功率二极管大功率二极管稳压二极管发光二极管

一、二极管的组成点接触型:结面积小,结电容小,故结允许的电流小,最高工作频率高。面接触型:结面积大,结电容大,故结允许的电流大,最高工作频率低。平面型:结面积可小、可大,小的工作频率高,大的结允许的电流大。

二、二极管的伏安特性及电流方程开启电压反向饱和电流击穿电压温度的电压当量二极管的电流与其端电压的关系称为伏安特性。材料开启电压导通电压反向饱和电流硅Si0.5V0.5~0.8V1µA以下锗Ge0.1V0.1~0.3V几十µA硅二极管2CP10的伏安特性正向特性反向特性反向击穿特性开启电压:0.5V导通电压:0.7锗二极管2AP15的伏安特性UonU(BR)开启电压:0.1V导通电压:0.2V从二极管的伏安特性可以反映出:

1.单向导电性2.

伏安特性受温度影响T(℃)↑→在电流不变情况下管压降u↓→反向饱和电流IS↑,U(BR)↓T(℃)↑→正向特性左移,反向特性下移正向特性为指数曲线反向特性为横轴的平行线增大1倍/10℃三、二极管的等效电路理想二极管近似分析中最常用理想开关导通时UD=0截止时IS=0导通时UD=Uon截止时IS=0导通时△i与△u成线性关系应根据不同情况选择不同的等效电路!1.将伏安特性折线化?100V?5V?1V?2.微变等效电路Q点越高,rd越小。

当二极管在静态基础上有一动态信号作用时,则可将二极管等效为一个电阻,称为动态电阻,也就是微变等效电路。ui=0时直流电源作用小信号作用静态电流四、二极管的主要参数最大整流电流IF:最大平均值最大反向工作电压UR:最大瞬时值反向电流IR:即IS最高工作频率fM:因PN结有电容效应

例1.2.1电路如图所示,UD=0.7V,试估算开关断开和闭合输出电压UO

。V1=6VV1=12VDSR应用举例例1:P69习题1.2解:采用理想电路模型ui和uo的波形如图所示

讨论:解决两个问题如何判断二极管的工作状态?什么情况下应选用二极管的什么等效电路?uD=V-iRQIDUDV与uD可比,则需图解:实测特性对V和Ui二极管的模型有什么不同?五、稳压二极管1.伏安特性进入稳压区的最小电流不至于损坏的最大电流

由一个PN结组成,反向击穿后在一定的电流范围内端电压基本不变,为稳定电压。2.主要参数稳定电压UZ、稳定电流IZ最大功耗PZM=IZMUZ动态电阻rz=ΔUZ

/ΔIZ若稳压管的电流太小则不稳压,若稳压管的电流太大则会因功耗过大而损坏,因而稳压管电路中必需有限制稳压管电流的限流电阻!限流电阻斜率?稳压二极管的应用RLuiuORDZiiziLUZ稳压二极管技术数据为:稳压值UZ=10V,Izmax=12mA,Izmin=2mA,负载电阻RL=2k

,输入电压ui=12V,限流电阻R=200,求iZ。若负载电阻变化范围为1.5k--4k

,是否还能稳压?RLuiuORDZiiziLUZUZ=10Vui=12VR=200Izmax=12mAIzmin=2mARL=2k(1.5k~4k)iL=uo/RL=UZ/RL=10/2=5(mA)i=(ui-UZ)/R=(12-10)/0.2=10(mA)iZ=i-iL=10-5=5(mA)RL=1.5k,iL=10/1.5=6.7(mA),iZ=10-6.7=3.3(mA)RL=4k,iL=10/4=2.5(mA),iZ=10-2.5=7.5(mA)负载变化,但iZ仍在12mA和2mA之间,所以稳压管仍能起稳压作用一、发光二极管LED(LightEmittingDiode)1.符号和特性工作条件:正向偏置一般工作电流几十mA,

导通电压(1

2)V符号u/Vi

/mAO2特性六、其它类型的二极管

发光类型:可见光:红、黄、绿显示类型:普通LED,不可见光:红外光点阵LED七段LED,二、光电二极管符号和特性符号特性uiOE=200lxE=400lx工作原理:三、变容二极管四、隧道二极管五、肖特基二极管无光照时,与普通二极管一样。有光照时,分布在第三、四象限。作业1.31.41.61.7§1.3晶体三极管一、晶体管的结构和符号二、晶体管的放大原理三、晶体管的共射输入特性和输出特性四、温度对晶体管特性的影响五、主要参数

一、晶体管的结构和符号多子浓度高多子浓度很低,且很薄面积大晶体管有三个极、三个区、两个PN结。小功率管中功率管大功率管为什么有孔?我国晶体管得型号命名方法

晶体管的结构及类型常用的三极管的结构有硅平面管和锗合金管两种类型。三极管的结构(a)平面型(NPN)(b)合金型(PNP)ebbecPNPe发射极,b基极,c集电极。NcNP二氧化硅发射区集电区基区基区发射区集电区二、晶体管的放大原理以NPN型三极管为例讨论cNNPebbec表面看三极管若实现放大,必须从三极管内部结构和外部所加电源的极性来保证。不具备放大作用三极管内部结构要求:NNPebcNNNPPP1.发射区高掺杂。2.基区做得很薄。通常只有几微米到几十微米,而且掺杂较少。

三极管放大的外部条件:外加电源的极性应使发射结处于正向偏置状态,而集电结处于反向偏置状态。3.集电结面积大。becRcRb1、晶体管内部载流子的运动IEIB发射结加正向电压,扩散运动形成发射极电流发射区的电子越过发射结扩散到基区,基区的空穴扩散到发射区—形成发射极电流

IE

(基区多子数目较少,空穴电流可忽略)。2.扩散到基区的自由电子与空穴的复合运动形成基极电流

电子到达基区,少数与空穴复合形成基极电流Ibn,复合掉的空穴由VBB

补充。多数电子在基区继续扩散,到达集电结的一侧。晶体管内部载流子的运动becIEIBRcRb3.集电结加反向电压,漂移运动形成集电极电流Ic

集电结反偏,有利于收集基区扩散过来的电子而形成集电极电流

Icn。其能量来自外接电源VCC。IC另外,集电区和基区的少子在外电场的作用下将进行漂移运动而形成反向饱和电流,用ICBO表示。ICBO晶体管内部载流子的运动beceRcRb2、晶体管的电流分配关系IEpICBOIEICIBIEnIBnICnIC=ICn+ICBO

IE=IEn+IEp

=ICn+IBn+IEp

IE=IC+IB图晶体管内部载流子的运动与外部电流IB=IEp+

IBn-ICBO

=I’B-ICBO3、晶体管的共射电流放大系数整理可得:ICBO称反向饱和电流ICEO称穿透电流3.1共射直流电流放大系数3.2共射交流电流放大系数VCCRb+VBBC1TICIBC2Rc+共发射极接法3.3共基直流电流放大系数或3.4共基交流电流放大系数直流参数与交流参数

的含义是不同的,但是,对于大多数三极管来说,

,与

的数值却差别不大,计算中,可不将它们严格区分。3.5

的关系ICIE+C2+C1VEEReVCCRc共基极接法晶体管的放大原理小结

扩散运动形成发射极电流IE,复合运动形成基极电流IB,漂移运动形成集电极电流IC。少数载流子的运动因发射区多子浓度高使大量电子从发射区扩散到基区因基区薄且多子浓度低,使极少数扩散到基区的电子与空穴复合因集电区面积大,在外电场作用下大部分扩散到基区的电子漂移到集电区基区空穴的扩散电流分配:

IE=IB+IC

IE-扩散运动形成的电流

IB-复合运动形成的电流

IC-漂移运动形成的电流穿透电流集电结反向电流直流电流放大系数交流电流放大系数三、晶体管的共射输入特性和输出特性为什么UCE增大曲线右移?

对于小功率晶体管,UCE大于1V的一条输入特性曲线可以取代UCE大于1V的所有输入特性曲线。为什么像PN结的伏安特性?为什么UCE增大到一定值曲线右移就不明显了?1.输入特性2.输出特性β是常数吗?什么是理想晶体管?什么情况下?对应于一个IB就有一条iC随uCE变化的曲线。为什么uCE较小时iC随uCE变化很大?为什么进入放大状态曲线几乎是横轴的平行线?饱和区放大区截止区晶体管的三个工作区域

晶体管工作在放大状态时,输出回路的电流iC几乎仅仅决定于输入回路的电流iB,即可将输出回路等效为电流iB

控制的电流源iC

。状态uBEiCuCE截止<UonICEOVCC放大≥UonβiB≥uBE饱和≥Uon<βiB≤uBE四、温度对晶体管特性的影响五、主要参数

直流参数:、、ICBO、ICEOc-e间击穿电压最大集电极电流最大集电极耗散功率,PCM=iCuCE=Constant安全工作区交流参数:β、α、fT(使β=1的信号频率)

极限参数:ICM、PCM、U(BR)CEO讨论一由图示特性求出PCM、ICM、U(BR)CEO

、β。2.7uCE=1V时的iC就是ICMU(BR)CEO清华大学华成英hchya@讨论二:利用Multisim测试晶体管的输出特性利用Multisim分析图示电路在V2小于何值时晶体管截止、大于何值时晶体管饱和。讨论三以V2作为输入、以节点1作为输出,采用直流扫描的方法可得!约小于0.5V时截止约大于1V时饱和描述输出电压与输出电压之间函数关系的曲线,称为电压传输特性。§1.4场效应管(以N沟道为例)

场效应管有三个极:源极(s)、栅极(g)、漏极(d),对应于晶体管的e、b、c;有三个工作区域:截止区、恒流区、可变电阻区,对应于晶体管的截止区、放大区、饱和区。1.结型场效应管符号结构示意图栅极漏极源极导电沟道单极型管∶噪声小、抗辐射能力强、低电压工作栅-源电压对导电沟道宽度的控制作用沟道最宽沟道变窄沟道消失称为夹断

uGS可以控制导电沟道的宽度。为什么g-s必须加负电压?UGS(off)漏-源电压对漏极电流的影响uGS>UGS(off)且不变,VDD增大,iD增大。预夹断uGD=UGS(off)

VDD的增大,几乎全部用来克服沟道的电阻,iD几乎不变,进入恒流区,iD几乎仅仅决定于uGS。场效应管工作在恒流区的条件是什么?uGD>UGS(off)uGD<UGS(off)夹断电压漏极饱和电流转移特性场效应管工作在恒流区,因而uGS>UGS(off)且uGD<UG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论