版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级上册数学期末考试试题一、单选题1.下列关于x的方程是分式方程的是(
)A.B.C.D.2.下面四个图形中,是轴对称图形的是()A.B.C.D.3.下列运算错误的是(
)A.B.C.D.(a≠0)4.目前世界上刻度最小的标尺是钻石标尺,它的最小刻度为(其中),用科学记数法表示这个最小刻度(单位:),结果是(
)A. B. C. D.5.如图,AB=AC,D,E分别是AB,AC上的点,下列条件不能判断△ABE≌△ACD的是()A.∠B=∠C B.BE=CD C.AD=AE D.BD=CE6.已知等腰三角形的两条边长分别为4和9,则它的周长为(
)A.17 B.22 C.23 D.17或227.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为(
)A.32° B.33° C.34° D.38°8.如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是(
)A.120° B.118° C.110° D.108°9.如图,在△ABC中,AB=AC,∠BAC=120°,D是BC的中点,连结AD,AE是∠BAD的平分线,DF∥AB交AE的延长线于点F,若EF=3,则AE的长是(
)A.3 B.6 C.9 D.1210.如图,点是的中点,,,平分,下列结论:①;②;③;④.其中正确的是()A.①②④ B.①②③④ C.②③④ D.①③11.如图,已知∠BAC=∠DAE=90°,AB=AD,下列条件能使△ABC≌△ADE的是(
)A.∠E=∠CB.AE=ACC.BC=DED.ABC三个答案都是12.(-2)2011×22012的计算结果是(
)A.0B.-24023C.24023D.-4402313.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是(
)A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC二、填空题14.分解因式:_______.15.若,,则=______________.16.若一个多边形的外角和是内角和的,则这个多边形的边数是_____.17.若点M(,a)关于y轴的对称点是点N(b,),则=________.18.若关于x的分式方程有增根,则a的值为_____.19.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.若AD=3cm,BE=1cm,则DE=_________.20.如图,在平面直角坐标系中,已知,在第一象限内的点C,使是以为腰的等腰直角三角形,则点C的坐标为_____.三、解答题21.计算:.22.解分式方程:.23.先化简,再求值:,其中,.24.如图,在△ABC中,∠ABC=30°,∠C=80°,AD是△ABC的角平分线,BE是△ABD中AD边上的高,求∠ABE的度数.25.如图,已知点A(-2,4),B(4,2),C(2,-1).(1)先画出△ABC,再作出△ABC关于x轴对称的图形△,则点的坐标为________;(2)P为x轴上一动点,请在图中画出使△PAB的周长最小时的点P,并直接写出此时点P的坐标(保留作图痕迹).26.如图,,都是等边三角形,BE,CD相交于点O.(1)求证:;(2)求的度数.27.某单位准备购买A、B两种型号的分类垃圾桶,购买时发现,A种型号的单价比B种型号的单价少50元,用2000元购买A种垃圾桶的个数与用2200元购买B种垃圾桶的个数相同.(1)求A、B两种型号垃圾桶的单价各是多少元?(2)若单位需要购买分类垃圾桶6个,总费用不超过3100元,求出所有不同的购买方式?28.阅读材料:若满足,求的值.解:设,,则,,所以请仿照上例解决下面的问题:(1)问题发现:若x满足,求的值;(2)类比探究:若x满足.求的值;(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).29.在△ABC中,AB=AC,点D在BA的延长线上,DE∥AC交BC的延长线于点E.(1)如图1,求证:DB=DE;(2)如图2,作△DBE的高EF,连结AE.若∠DEA=∠FEA,求证:∠AEB=45°;(3)如图3,在(2)的条件下,过点B作BG⊥AE于点G,BG交AC于点H,若CE=2,求AG的长.参考答案1.C2.D3.A4.C5.B6.B7.A8.D9.B10.A11.D12.B13.C14.y(x+3)(x-3)15.9016.817.118.19.2cm20.(7,2)或(5,7)【分析】分别从当∠ABC=90°,AB=BC时,当∠BAC=90°,AB=AC时去分析求解,利用全等三角形的判定与性质,即可求得点C的坐标.【详解】如图①,当∠ABC=90°,AB=BC时,过点C作CD⊥x轴于点D,∴∠CDB=∠AOB=90°,∵∠OAB+∠ABO=90°,∠ABO+∠CBD=90°,∴∠OAB=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴BD=OA=5,CD=OB=2,∴OD=OB+BD=7,∴点C的坐标为(7,2);如图②,当∠BAC=90°,AB=AC时,过点C作CD⊥y轴于点D,同理可证得:△OAB≌△DCA,∴AD=OB=2,CD=OA=5,∴OA=OA+AD=7,∴点C的坐标为(5,7);综上所述点,点C的坐标为(7,2)或(5,7).21.【分析】先运用乘法公式进行计算,再合并同类项即可.【详解】解:,=,=,=.【点睛】本题考查了整式的乘法,解题关键是熟记乘法公式,准确进行计算.22.x=6【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】等式两边同时乘得:整理得:,解得:x=6,经检验x=6是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23..【分析】将括号内利用平方差公式和完全平方式通分化简,再将除法改为乘法,最后约分即可化简.根据零指数幂计算出a的值,再将a、b的值代入化简后的式子求值即可.【详解】解:
∵,,∴.24.55°【分析】先根据三角形内角和定理及角平分线的性质求出∠BAD度数,由AE⊥BE可求出∠AEB=90°,再由三角形的内角和定理即可解答.【详解】解:∵∠ABC=30°,∠C=80°,∴∠BAC=180°-30°-80°=70°,∵AD是∠BAC的平分线,∴∠BAD=×70°=35°,∵AE⊥BE,∴∠AEB=90°,∴∠ABE=180°-∠AEB-∠BAE=180°-90°-35°=55°.25.(1)作图见解析,(2,1);(2)作图见解析,(2,0).【分析】(1)在坐标系中标出A、B、C三点,再顺次连接,即为;根据轴对称的性质找到A、B、C三点关于x轴的对应点、、,再顺次连接,即为,最后写出的坐标即可.(2)根据轴对称的性质结合两点之间线段最短,即可直接连接,即与x轴的交点为点P,再直接写出点P坐标即可.【详解】(1)和如图所示,根据图可知.故答案为:(2,1).(2)∵AB长度不变,的周长,∴只要最小即可.如图,连结交x轴于点P,∵两点之间线段最短,∴,设解析式为,过(-2,-4),B(4,2),代入得,解得:,∴的解析式为,当时,即,解得:.∴点P坐标为(2,0).当点P坐标为(2,0)时,周长最短.【点睛】本题主要考查作图-轴对称变换,解题的关键是根据轴对称变换的定义作出变换后的对应点及掌握轴对称的性质.26.(1)见解析;(2)120°.【分析】(1)由条件可证明△ADC≌△ABE,可证得BE=DC;(2)由(1)可得出∠ADC=∠ABE,根据三角形的内角和定理求出∠BOD=180°-∠ODB-∠DBA-∠ABE=60°,最后求出的度数.【详解】(1)证明:∵△ABD与△AEC都是等边三角形,∴AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,∴△DAC≌△BAE(SAS),∴BE=DC;(2)由(1)可得出∠ADC=∠ABE,∵∠BOD=180°-∠ODB-∠DBA-∠ABE=180°-∠ODB-60°-∠ADC=120°-(∠ODB+∠ADC)=120°-60°=60°,∴∠BOC=180°-∠BOD=180°-60°=120°.27.(1)、两种型号垃圾桶的单价是500元和550元;(2)购买A种型号垃圾桶为4个,B种型号垃圾桶为2个;A种型号垃圾桶为5个,B种型号垃圾桶为1个;A种型号垃圾桶为6个,B种型号垃圾桶为0个.【分析】(1)设、两种型号垃圾桶的单价分别为元,元,由题意列方程,求出的值即为种型号垃圾桶的单价,再由求出种型号垃圾桶的单价.(2)设购买A种型号垃圾桶个,则由题意,列式,解出的范围,分类讨论即可.【详解】(1)设、两种型号垃圾桶的单价分别为元,元,由题意列方程:解得:经检验知:是原方程的解,符合题意∴即、两种型号垃圾桶的单价是500元和550元.(2)设购买A种型号垃圾桶为个,则:解得:,又∵单位需要购买分类垃圾桶6个∵且为整数,∴所以购买A种型号垃圾桶为4个,B种型号垃圾桶为个;A种型号垃圾桶为5个,B种型号垃圾桶为个;A种型号垃圾桶为6个,B种型号垃圾桶为.综上所述,共有三种购买方式,即购买A种型号垃圾桶为4个,B种型号垃圾桶为2个;A种型号垃圾桶为5个,B种型号垃圾桶为1个;A种型号垃圾桶为6个,B种型号垃圾桶为0个.【点睛】本题考查分式方程的应用,以及一元一次不等式的应用,根据相关知识点列出关系式是解题关键.28.(1)21;(2)1009.5;(3)900【分析】(1)令a=3-x,b=x-2,整体代入后利用完全平方和公式求解;(2)令a=2021-x,b=2020-x,再利用完全平方差公式求代数式的值;(3)设a=x-20,b=x-10,由题意列出方程ab=200,再结合正方形和矩形的面积公式求四边形MFNP的面积.【详解】解:(1)设a=3-x,b=x-2,∴ab=-10,a+b=1,∴(3-x)2+(x-2)2,=a2+b2=(a+b)2-2ab=12-2×(-10)=21;(2)设a=2022-x,b=2021-x,∴a-b=1,a2+b2=2020,∴=ab=−[(a−b)2−(a2+b2)]=−×(12−2020)=1009.5;(3)∵EF=DG=x-20,ED=FG=x-10,∵四边形MEDQ与NGDH为正方形,四边形QDHP为长方形,∴MF=EF+EM=EF+ED=(x-20)+(x-10),FN=FG+GN=FG+GD,∴FN=(x-10)+(x-20),∴MF=NF,∴四边形MFNP为正方形,设a=x-20,b=x-10,∴a-b=-10,∵SEFGD=200,∴ab=200,∴SMFNP=(a+b)2=(a-b)2+4ab=(-10)2+4×200=900.29.(1)见详解;(2)见详解;(3)【分析】(1)根据平行线的性质和等腰三角形的判定定理解答即可;(2)根据三角形的内角和解答即可;(3)过点C作CR⊥AE于R,过点R作RT⊥CE于T,先证明△ABG≌△CAR,再根据全等三角形的性质解答即可.【详解】证明:(1)∵AB=AC,∴∠B=∠ACB,∵DE∥AC,∴∠ACB=∠E,∴∠B=∠E,∴DB=DE;(2)令∠DEA=α,则∠FEA=α,∠FED=2α,∵EF是△DBE的高,∴EF⊥DB,∴∠DFE=90°,∴∠D=90°-∠DEF=90°-2α,∵∠B+∠DEB+∠D=180°,∴2∠DEB+90°-2α=180°,∴∠DEB=4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业合同范本查询与咨询服务
- 2024年公司食堂餐饮服务标准协议版
- 广播电视台开荒保洁施工合同
- 2024年度停车场经营管理合同3篇
- 邯郸市二手车市场租赁合同
- 宾馆单元门定制合同
- 滑雪道建设平地机租赁协议
- 写字楼抹灰施工协议
- 保险业务员招聘合同
- 管道工程劳务分包协议
- 居家护理压力性损伤防控制度
- 上门延伸医疗护理服务
- 老年营养示范化病房创建方案
- 2024年物业管理师(中级四级)考试题库大全-下(判断、简答题)
- 2024年新疆区公务员录用考试《行测》试题及答案解析
- 《一桥飞架连天堑》课件 2024-2025学年岭南美版 (2024)初中美术七年级上册
- GB/T 6974.3-2024起重机术语第3部分:塔式起重机
- 期末检测卷(试题)-2024-2025学年北师大版五年级上册数学
- 2025年高考语文一轮复习策略讲座
- 高中物理-《互感与自感》课件-新人教版选修3
- 《古建筑油漆彩画作》课件-第七章 古建筑彩画工艺技术
评论
0/150
提交评论