版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第=page11页,共=sectionpages33页专题09圆的最值模型之隐圆模型一、模型说明1、动点定长模型若P为动点,但AB=AC=AP,则B、C、P三点共圆,A圆心,AB半径2、直角圆周角模型固定线段AB所对动角∠C恒为90°,则A、B、C三点共圆,AB为直径3、四点共圆模型固定线段AB所对同侧动角∠P=∠C,则A、B、C、P四点共圆二、例题精讲例1.(直角模型1)如图,正方形的边长为4,点E是正方形内的动点,点P是边上的动点,且.连结,,,,则的最小值为(
)A. B. C. D.【答案】A【分析】先证明,即可得点E在以为直径的半圆上移动,设的中点为O,作正方形关于直线对称的正方形,则点D的对应点是F,连接交于P,交半圆O于E,根据对称性有:,则有:,则线段的长即为的长度最小值,问题随之得解.【详解】解:∵四边形是正方形,∴,∴,∵,∴,∴,∴点E在以为直径的半圆上移动,如图,设的中点为O,作正方形关于直线对称的正方形,则点D的对应点是F,连接交于P,交半圆O于E,根据对称性有:,则有:,则线段的长即为的长度最小值,E∵,,∴,,∴,∴,故的长度最小值为,故选:A.【点睛】本题考查了轴对称﹣最短路线问题,正方形的性质,勾股定理,正确的作出辅助线,得出点E的运动路线是解题的关键.例2.(直角模型2)如图,四边形为矩形,,.点P是线段上一动点,点M为线段上一点.,则的最小值为(
)A. B. C. D.【答案】D【分析】证明,得出点M在O点为圆心,以AO为半径的圆上,从而计算出答案.【详解】设AD的中点为O,以O点为圆心,AO为半径画圆∵四边形为矩形∴∵∴∴∴点M在O点为圆心,以AO为半径的圆上连接OB交圆O与点N∵点B为圆O外一点∴当直线BM过圆心O时,BM最短∵,∴∴∵故选:D.【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.例3(四点共圆).如图,在△ABC中,∠ACB=90°,AC=BC,AB=4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为(
)A.2 B.π C.2π D.π【答案】D【详解】解:如图,∵CA=CB,∠ACB=90°,AD=DB,∴CD⊥AB,∴∠ADE=∠CDF=90°,CD=AD=DB,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴∠DAE=∠DCF,∵∠AED=∠CEG,∴∠ADE=∠CGE=90°,∴A、C、G、D四点共圆,∴点G的运动轨迹为弧CD,∵AB=4,ABAC,∴AC=2,∴OA=OC,∵DA=DC,OA=OC,∴DO⊥AC,∴∠DOC=90°,∴点G的运动轨迹的长为π.故选:D.例4.(动点定长)如图,菱形ABCD边长为4,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则A′C的最小值是(
)A.2 B.+1 C.2﹣2 D.3【答案】C【分析】根据题意,在折叠过程中A′在以M为圆心、AD为直径的圆上的弧AD上运动,当A′C取最小值时,由两点之间线段最短知此时M、A′、C三点共线,得出A′的位置,过点M作MH⊥DC于点H,再利用含30°的直角三角形的性质以及勾股定理求出MC的长,进而求出A′C的长即可.【详解】解:如图所示,∵MA′是定值,A′C长度取最小值时,即A′在MC上.过点M作MH⊥DC于点H,∵在边长为4的菱形ABCD中,∠MAN=60°,M为AD的中点,∴2MD=AD=CD=4,∠HDM=∠MAN=60°,∴MD=2,∠HMD=30°,∴HD=MD=1,∴HM==,CH=CD+DH=5,∴,∴A′C=MC-MA′=2-2;故选:C.【点睛】本题考查翻折变换、菱形的性质、勾股定理、两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,突破点是正确寻找点A′的位置.例5.(综合1)正方形ABCD中,AB=4,点E、F分别是CD、BC边上的动点,且始终满足DE=CF,DF、AE相交于点G.以AG为斜边在AG下方作等腰直角△AHG使得∠AHG=90°,连接BH.则BH的最小值为(
)A. B. C. D.【答案】C【分析】首先证明,从而,再根据,可求,可知点H的运动轨迹为以点M为圆心,MH为半径的圆,从而可求BH最小值.【详解】解:如图,取AD中点O,连接OG,以AO为斜边作等腰直角三角形AOM,则,在和中,,∴(SAS),∴,∵,∴,∴,是直角三角形,∴,∵为等腰直角三角形,∴,∴,又∵,∴,∴,∴,∴点H的运动轨迹为以点M为圆心,MH为半径的圆,如图,连接BM,交圆M于,过点M作于点P,∵,,∴,∴为等腰直角三角形,∵,∴AP=MP==1,∴BP=4-1=3,在中,,∴.∴BH的最小值为.故选:C.【点睛】本题考查了最短路径问题,解题的关键是准确构造辅助线,利用三角形相似以及点和圆的知识解决.例6.(综合2)如图,四边形是正方形,是等边三角形,为对角线(不含点)上任意一点,将绕点逆时针旋转得到,连接、、.(1)求证:;(2)①当点在何处时,的值最小;②当点在何处时,的值最小,并说明理由;(3)当的最小值为时,求正方形的边长.【答案】(1)见解析;(2)①当M点落在BD的中点时;②当M点位于BD与CE的交点处时,AM+BM+CM的值最小,理由见解析;(3)【分析】(1)由题意得,,所以,容易证出;(2)①根据“两点之间线段最短”,可得,当点落在的中点时,的值最小;②根据“两点之间线段最短”,当点位于与的交点处时,的值最小,即等于的长(如图);(3)作辅助线,过点作交的延长线于,由题意求出,设正方形的边长为,在中,根据勾股定理求得正方形的边长为.【详解】解:(1)证明:是等边三角形,,.,.即.又,.(2)解:①当点落在的中点时,、、三点共线,的值最小.②如图,连接,当点位于与的交点处时,的值最小,理由如下:连接,由(1)知,,,,,是等边三角形...根据“两点之间线段最短”可知,若、、、在同一条直线上时,取得最小值,最小值为.在和中,,,,,,若连接,则,,,、可以同时在直线上.当点位于与的交点处时,的值最小,即等于的长.(3)解:过点作交的延长线于,.设正方形的边长为,则,.在中,,.解得,(舍去负值).正方形的边长为.【点睛】本题考查轴对称的性质和正方形的性质,三角形全等的判定、等腰三角形的性质、勾股定理,解题的关键是掌握以上知识点,添加适当辅助线,灵活运用.三、课后训练1.如图,在中,,cm,cm.是边上的一个动点,连接,过点作于,连接,在点变化的过程中,线段的最小值是(
)A.1 B. C.2 D.【答案】A【分析】由∠AEC=90°知,点E在以AC为直径的⊙M的上(不含点C、可含点N),从而得BE最短时,即为连接BM与⊙M的交点(图中点E′点),BE长度的最小值BE′=BM−ME′.【详解】如图,由题意知,,在以为直径的的上(不含点、可含点,最短时,即为连接与的交点(图中点点),在中,,,则.,长度的最小值,故选:.【点睛】本题主要考查了勾股定理,圆周角定理,三角形的三边关系等知识点,难度偏大,解题时,注意辅助线的作法.2.如图,中,,,,P是内部的一个动点,满足,则线段CP长的最小值为(
)A. B.2 C. D.【答案】D【分析】结合题意推导得,取AB的中点O,以点O为圆心,为直径作圆,连接OP;根据直角三角形斜边中线的性质,得;根据圆的对称性,得点P在以AB为直径的上,根据两点之间直线段最短的性质,得当点O、点P、点C三点共线时,PC最小;根据勾股定理的性质计算得,通过线段和差计算即可得到答案.【详解】,,,,,取AB的中点O,以点O为圆心,为直径作圆,连接OP,点P在以AB为直径的上,连接OC交于点P,当点O、点P、点C三点共线时,PC最小在中,,,,,,最小值为故选:D.【点睛】本题考查了两点之间直线段最短、圆、勾股定理、直角三角形斜边中线的知识;解题的关键是熟练掌握圆的对称性、两点之间直线段最短、直角三角形斜边中线的性质,从而完成求解.3.如图,在Rt和Rt中,,,AB=AE=5.连接BD,CE,将△绕点A旋转一周,在旋转的过程中当最大时,△ACE的面积为(
).A.6 B. C.9 D.【答案】A【分析】先分析出D的轨迹为以A为圆心AD的长为半径的圆,当BD与该圆相切时,∠DBA最大,过C作CF⊥AE于F,由勾股定理及三角函数计算出BD、CF的长,代入面积公式求解即可.【详解】解:由题意知,D点轨迹为以A为圆心AD的长为半径的圆,当BD与D点的轨迹圆相切时,∠DBA取最大值,此时∠BDA=90°,如图所示,过C作CF⊥AE于F,∵∠DAE=90°,∠BAC=90°,∴∠CAF=∠BAD,在Rt△ABD中,由勾股定理得:BD=,∴由sin∠CAF=sin∠BAD得:,即,解得:CF=,∴此时三角形ACE的面积==6,故选:A.【点睛】本题考查了旋转的性质、锐角三角函数、勾股定理等知识点.此题综合性较强,解题关键是利用D的轨迹圆确定出∠DBA取最大值时的位置.4.如图,在△ABC中,∠C=90°,AC=8,AB=10,D是AC上一点,且CD=3,E是BC边上一点,将△DCE沿DE折叠,使点C落在点F处,连接BF,则BF的最小值为.【答案】/【分析】先由折叠判断出F的运动轨迹是为以D为圆心,CD的长度为半径的圆,当B、D、F共线且F在B、D之间时BF最小,根据勾股定理及圆的性质求出此时BD、BF的长度即可.【详解】解:由折叠知,F点的运动轨迹为:以D为圆心,CD的长度为半径的圆,如图所示,可知,当点B、D、F共线,且F在B、D之间时,BF取最小值,∵∠C=90°,AC=8,AB=10,∴BC=6,在Rt△BCD中,由勾股定理得:BD=,∴BF=BD-DF=,故答案为:.【点睛】本题考查了折叠的性质、圆的性质、勾股定理解直角三角形的知识,该题涉及的最值问题属于中考常考题型,根据折叠确定出F点运动轨迹是解题关键.5.△ABC中,AB=AC=5,BC=6,D是BC的中点,E为AB上一动点,点B关于DE的对称点在△ABC内(不含△ABC的边上),则BE长的范围为.【答案】【分析】首先根据运动特点分析出点的运动轨迹在以为圆心,为半径的圆弧上,然后分点恰好落在边上和点恰好落在边上两种情况讨论,分别利用勾股定理以及等腰三角形的性质和判定进行求解和证明即可得出两种临界情况下的长度,从而得出结论.【详解】解:∵点B与关于DE对称,∴,则点的运动轨迹在以为圆心,为半径的圆弧上,①如图所示,当点恰好落在边上时,此时,连接和,由题意及“三线合一”知,,,∴在中,,此时,根据对称的性质,,∴由等面积法,,∴,在中,;②如图所示,当点恰好落在边上时,连接、、和,由题意,,∴,,∴,即:,∴,即:,∵点B与关于DE对称,∴,,∴,∴,,由对称的性质,,∴,∴,∴,即:此时点为的中点,∴此时,,综上,长的范围为,故答案为:.【点睛】本题考查等腰三角形的性质和判定,以及勾股定理解直角三角形等,能够根据题意准确分析出动点的运动轨迹,并构建适当的三角形进行求解是解题关键.6.如图,在RtABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=8,BC=6,那么在旋转过程中,线段CM长度的取值范围是.【答案】3≤CM≤7【分析】由勾股定理可求AB=10,由三角形中位线定理可求OM=2,点M在以O为圆心,OM长为半径的圆上运动,即可求解.【详解】解:如图,取AB中点O,连接OC,OM,∵AC=8,BC=6,∴AB=,∵D为AC的中点,点O是AB中点,∴AD=4,CO=5,∵M为BD的中点,点O是AB中点,∴OM=AD=2,∴点M在以O为圆心,OM长为半径的圆上运动,∴当点M在线段OC上时,CM有最小值=5﹣2=3,当点M在线段CO的延长线时,CM有最大值=5+2=7,∴线段CM长度的取值范围3≤CM≤7,故答案为:3≤CM≤7.【点睛】本题主要考查三角形中位线及隐圆问题,熟练掌握三角形的中位线及动点的运动轨迹是解题的关键.7.如图,在矩形中,,,点、分别是边、上的动点,且,点是的中点,、,则四边形面积的最小值为.【答案】38【分析】首先连接AC,过B作BH⊥AC于H,当G在BH上时,三角形ACG面积取最小值,此时四边形AGCD面积取最小值,再连接BG,知BG=2,得到G点轨迹圆,该轨迹与BH交点即为所求最小值时的G点,利用面积法求出BH、GH的长,代入三角形面积公式求解即可.【详解】解:连接,过作于,当G在BH上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,四边形AGCD面积=三角形ACG面积+三角形ACD面积,即四边形AGCD面积=三角形ACG面积+24.连接BG,由G是EF中点,EF=4知,BG=2,故G在以为圆心,为半径的圆弧上,圆弧交于,此时四边形AGCD面积取最小值,如图所示,由勾股定理得:AC=10,∵AC·BH=AB·BC,∴BH=4.8,∴,即四边形面积的最小值=.故答案为:.【点睛】本题考查了勾股定理及矩形中的与动点相关的最值问题,解题的关键是利用直角三角形斜边的直线等于斜边的一半确定出点的运动轨迹.8.如图,四边形中,,,,,点是四边形内的一个动点,满足,则面积的最小值为.【答案】【分析】取的中点,连接,过点作交的延长线于点,过点作于,交于,则,通过计算得出当三点共线时,有最小值,求出最小值即可.【详解】解:如图,取的中点,连接,过点作交的延长线于点,过点作于,交于,则,,,,,,,,,,,四边形为等腰梯形,,,,,,点在以点为圆心,2为半径的圆上,,,,,,,,,,,,当三点共线时,有最小值,面积的最小值为.【点睛】本题考查了解直角三角形、隐圆、直角三角形的性质等知识点,点位置的确定是解题关键.9.如图,△ABC为等边三角形,AB=2,若P为△ABC内一动点,且满足∠PAB=∠ACP,则点P运动的路径长为.【答案】【详解】解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,如图所示:连接OA、OC,作OD⊥AC于D,则AD=CDAC=1,∵所对的圆心角=2∠APC=240°,∴劣弧AC所对的圆心角∠AOC=360°﹣240°=120°,∵OA=OC,∴∠OAD=30°,∵OD⊥AC,∴ODAD,OA=2OD,∴的长为π;故答案为:π.10.如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+CG的最小值为.【答案】5【分析】因为DG=EF=2,所以G在以D为圆心,2为半径圆上运动,取DI=1,可证△GDI∽△CDG,从而得出GI=CG,然后根据三角形三边关系,得出BI是其最小值【详解】解:如图,在Rt△DEF中,G是EF的中点,∴DG=,∴点G在以D为圆心,2为半径的圆上运动,在CD上截取DI=1,连接GI,∴==,∴∠GDI=∠CDG,∴△GDI∽△CDG,∴=,∴IG=,∴BG+=BG+IG≥BI,∴当B、G、I共线时,BG+CG最小=BI,在Rt△BCI中,CI=3,BC=4,∴BI=5,故答案是:5.【点睛】本题考查了相似三角形的性质与判定,圆的概念,求得点的运动轨迹是解题的关键.11.问题背景如图(1),△ABC为等腰直角三角形,∠BAC=90°,直线l绕着点A顺时针旋转,过B,C两点分别向直线l作垂线BD,CE,垂足为D,E,此时△ABD可以由△CAE通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小(取最小旋转角度).尝试应用如图(2),△ABC为等边三角形,直线l绕着点A顺时针旋转,D、E为直线l上两点,∠BDA=∠AEC=60°.△ABD可以由△CAE通过旋转变换得到吗?若可以,请指出旋转中心O的位置并说明理由;拓展创新如图(3)在问题背景的条件下,若AB=2,连接DC,直接写出CD的长的取值范围.【答案】(1)旋转中心为BC边的中点O,旋转方向为逆时针,旋转角度为90°;(2)可以,旋转中心为为等边△ABC三边垂直平分线的交点O,理由见解析;(3)【分析】问题背景(1)根据等腰直角三角形的性质,以及旋转的性质确定即可;尝试应用(2)首先通过证明△ABD和△CAE全等说明点A和点B对应,点C和点A对应,从而作AB和AC的垂直平分线,其交点即为旋转中点;拓展创新(3)首先确定出D点的运动轨迹,然后结合点与圆的位置关系,分别讨论出CD最长和最短时的情况,并结合勾股定理进行求解即可.【详解】解:问题背景(1)如图所示,作AO⊥BC,交BC于点O,由等腰直角三角形的性质可知:∠AOC=90°,OA=OC,∴点A是由点C绕点O逆时针旋转90°得到,同理可得,点B是由点A绕点O逆时针旋转90°得到,点D是由点E绕点O逆时针旋转90°得到,∴△ABD可以由△CAE通过旋转变换得到,旋转中心为BC边的中点O,旋转方向为逆时针,旋转角度为90°;尝试应用(2)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠DAC=∠DAB+∠BAC=∠AEC+∠EAC,∠BAC=∠AEC=60°,∴∠DAB=∠ECA,在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴△ABD的A、B、D三点的对应点分别为△CAE的C、A、E三点,则AC、AB分别视作两组对应点的连线,此时,如图所示,作AC和AB的垂直平分线交于点O,∵△ABC为等边三角形,∴由等边三角形的性质可知,OC=OA=OB,∠AOC=120°,∴△ABD可以由△CAE通过旋转变换得到,旋转中心为为等边△ABC三边垂直平分线的交点O;拓展创新(3)由(1)知,在直线l旋转的过程中,总有∠ADB=90°,∴点D的运动轨迹为以AB为直径的圆,如图,取AB的中点P,连接CP,交⊙P于点Q,则当点D在CP的延长线时,CD的长度最大,当点D与Q点重合时,CD的长度最小,即CQ的长度,∵AB=AC,AB=2,∴AP=1,AC=2,在Rt△APC中,,由圆的性质,PD=AP=1,∴PD=PQ=1,∴,,∴CD的长的取值范围为:.【点睛】本题主要考查旋转三要素的确定,以及旋转的性质,主要涉及等腰直角三角形和等边三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论